图结构基本知识
图
- 1. 相关概念
- 2. 图的表示方式
- 3. 图的遍历
- 3.1 深度优先遍历(DFS)
- 3.2 广度优先遍历(BFS)
1. 相关概念
- 图G(V,E) :一种数据结构,可表示“多对多”关系,由顶点集V和边集E组成;
- 顶点(vertex) :
- 边 (edge):一幅点对(v,w),v,w∈V,边也称为弧;
- 邻接:点v,w邻接,当且仅当边(v,w)∈E;
- 路径 :由一个顶点序列v1,v2,…,vn组成,路径长为n-1;
- 有向图 :边是单向的,点对有序;
- 无向图 :边是双向的图,点对无序;
- 带权图:不同边具有不同的权值的图;
- 连通:无向图的一个顶点到其他任何顶点都存在一条路径,则称其为连通的;
- 强连通:有向图的一个顶点到其他任何顶点都存在一条路径;
- 弱连通:有向图本身不是强连通的,但是其边不考虑方向的无向图是连通的;
- 完全图:每一对顶点间都存在边;
2. 图的表示方式
- 邻接矩阵:使用二维数组实现,数组中每个元素表示图中两顶点之间是否有边,或者表示边的权值,适用于稠密图,对于稀疏图而言此表示方法过于浪费空间;

package com.northsmile.graph;import java.util.ArrayList;
import java.util.Arrays;/*** Author:NorthSmile* Create:2023/4/18 9:17* 使用邻接矩阵表示图(无向图)*/
public class Graph {// 存储边及其权值int[][] edges;// 存储顶点ArrayList<String> vertexes;// 记录边的数目int edgeNums;public Graph(int n){edges=new int[n][n];vertexes=new ArrayList<>(n);edgeNums=0;}/*** 插入顶点* @param vertex*/public void insertVertex(String vertex){vertexes.add(vertex);}/*** 插入边* @param v1 边的一个顶点对应下标* @param v2 边的另一个顶点对应下标* @param w 边对应权值,默认为1*/public void insertEdge(int v1,int v2,int w){edges[v1][v2]=w;edges[v2][v1]=w;edgeNums++;}/*** 获取顶点数量* @return*/public int getVertexesNum(){return vertexes.size();}/*** 获取边的数目* @return*/public int getEdgesNum(){return edgeNums;}/*** 获取指定下标对应的顶点的值* @param v* @return*/public String getValByIndex(int v){return vertexes.get(v);}/*** 获取指定边的权值* @param v1* @param v2* @return*/public int getWeightOfEdge(int v1,int v2){return edges[v1][v2];}/*** 显示表示图的邻接矩阵*/public void showGraph(){for (int[] edge:edges){System.out.println(Arrays.toString(edge));}}
}
package com.northsmile.graph;/*** Author:NorthSmile* Create:2023/4/18 9:18*/
public class GraphDemo {public static void main(String[] args) {int n=5;String[] vertexes={"A","B","C","D","E"};Graph graph = new Graph(n);// 插入顶点for (String vertex:vertexes){graph.insertVertex(vertex);}// 插入边graph.insertEdge(0,1,1);graph.insertEdge(0,2,1);graph.insertEdge(1,2,1);graph.insertEdge(1,3,1);graph.insertEdge(1,4,1);graph.showGraph();}
}
- 邻接表:使用数组+链表的方式实现,适用于稀疏图表示,是图的标准表示方法,对于每个顶点,将其所有邻接点使用一个表存放;

package com.northsmile.graph;import java.util.ArrayList;
import java.util.HashMap;/*** Author:NorthSmile* Create:2023/4/18 11:12* 使用邻接表表示图(有向图)*/
public class GraphByAdjacenceList {// 邻接表HashMap<String,Vertex> list;int vertexNums;int edgeNums;public GraphByAdjacenceList(int n){list=new HashMap<>();vertexNums=n;edgeNums=0;}/*** 插入顶点* @param vertex*/public void insertVertex(String vertex){list.put(vertex,new Vertex(vertexNums));}/*** 插入边* @param v 顶点* @param w 邻接点*/public void insertEdge(String v,String w){Vertex vertex = list.get(v);vertex.table.add(w);edgeNums++;}/*** 获取顶点数量* @return*/public int getVertexesNum(){return list.size();}/*** 获取边的数目* @return*/public int getEdgesNum(){return edgeNums;}/*** 显示表示图的邻接表*/public void showGraph(){for (String vertex:list.keySet()){System.out.println(vertex+":"+list.get(vertex).table);}}/*** 顶点类*/class Vertex{ArrayList<String> table;public Vertex(int n){table=new ArrayList<>(n/2);}}
}
package com.northsmile.graph;/*** Author:NorthSmile* Create:2023/4/18 9:18*/
public class GraphDemo {public static void main(String[] args) {// 2.邻接表int n=5;String[] vertexes={"A","B","C","D","E"};GraphByAdjacenceList graph = new GraphByAdjacenceList(n);// 插入顶点for (String vertex:vertexes){graph.insertVertex(vertex);}// 插入边graph.insertEdge("A","B");graph.insertEdge("A","C");graph.insertEdge("B","C");graph.insertEdge("B","D");graph.insertEdge("B","E");graph.showGraph();}
}
3. 图的遍历

3.1 深度优先遍历(DFS)
- 类似树的先序遍历,先访问当前顶点,再依次以其邻接点为新的起点,进行深度优先遍历;
- 与树的遍历不同,图在深度优先遍历时,当前顶点的邻接点可能已经访问过,所以无需再进行访问;
- 为了实现顶点的唯一遍历,在代码实现时需要提供一个标记数组,表示对应顶点是否已经访问过;
- 代码实现以递归方式进行;


/*** 深度优先遍历:类似树的先序遍历* @param v 以当前点开始遍历* @param visited 标记节点是否访问过*/public void dfs(int v,boolean[] visited){System.out.print(vertexes.get(v)+"->");// 遍历当前顶点的邻接点for (int i=0;i<vertexes.size();i++){// 说明v、i之间存在边if (edges[v][i]!=0&&!visited[i]){visited[i]=true;dfs(i,visited);}}}public void dfs(){// 标记顶点是否已经访问过boolean[] visited=new boolean[vertexes.size()];// 以每个顶点开始进行DFS,实现图的完整遍历for (int i=0;i<vertexes.size();i++){if (!visited[i]){visited[i]=true;dfs(i,visited);}}}
3.2 广度优先遍历(BFS)
- 类似树的层序遍历,先访问当前顶点,再依次访问其邻接点,然后分别以其邻接点为新的起点,继续进行广度优先遍历;
- 与树的遍历不同,图在深度优先遍历时,当前顶点的邻接点可能已经访问过,所以无需再进行访问;
- 为了实现顶点的唯一遍历,在代码实现时需要提供一个标记数组,表示对应顶点是否已经访问过;
- 代码实现借助队列实现;

/*** 广度优先遍历:类似树的层次遍历* @param v 以当前点开始遍历* @param visited 标记节点是否访问过*/public void bfs(int v,boolean[] visited){ArrayDeque<Integer> queue=new ArrayDeque<>();queue.offer(v);visited[v]=true;while (!queue.isEmpty()){Integer cur = queue.poll();System.out.print(vertexes.get(cur)+"->");// 遍历当前顶点的邻接点for (int i=0;i<vertexes.size();i++){// 说明v、i之间存在边if (edges[cur][i]!=0&&!visited[i]){visited[i]=true;queue.offer(i);}}}}public void bfs(){// 标记顶点是否已经访问过boolean[] visited=new boolean[vertexes.size()];// 以每个顶点开始进行BFS,实现图的完整遍历for (int i=0;i<vertexes.size();i++){if (!visited[i]){bfs(i,visited);}}}
资料来源:尚硅谷
相关文章:
图结构基本知识
图 1. 相关概念2. 图的表示方式3. 图的遍历3.1 深度优先遍历(DFS)3.2 广度优先遍历(BFS) 1. 相关概念 图G(V,E) :一种数据结构,可表示“多对多”关系,由顶点集V和边集E组成;顶点(ve…...
Hibernate 的多种查询方式
Hibernate 是一个开源的 ORM(对象关系映射)框架,它可以将 Java 对象映射到数据库表中,实现对象与关系数据库的映射。Hibernate 提供了多种查询方式,包括 OID 检索、对象导航检索、HQL 检索、QBC 检索和 SQL 检索。除此…...
FreeRTOS 任务调度及相关函数详解(一)
文章目录 一、任务调度器开启函数 vTaskStartScheduler()二、内核相关硬件初始化函数 xPortStartScheduler()三、启动第一个任务 prvStartFirstTask()四、中断服务函数 xPortPendSVHandler()五、空闲任务 一、任务调度器开启函数 vTaskStartScheduler() 这个函数的功能就是开启…...
飞桨paddlespeech语音唤醒推理C实现
上篇(飞桨paddlespeech 语音唤醒初探)初探了paddlespeech下的语音唤醒方案,通过调试也搞清楚了里面的细节。因为是python 下的,不能直接部署,要想在嵌入式上部署需要有C下的推理实现,于是我就在C下把这个方…...
04-Mysql常用操作
1. DDL 常见数据库操作 # 查询所有数据库 show databases; # 查询当前数据库 select databases();# 使用数据库 use 数据库名;# 创建数据库 create database [if not exits] 数据库名; # []代表可选可不选# 删除数据库 drop database [if exits] 数据库名; 常见表操作 创建…...
TensorFlow 2 和 Keras 高级深度学习:1~5
原文:Advanced Deep Learning with TensorFlow 2 and Keras 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象&#x…...
UML类图
一、UML 1、什么是UML? UML——Unified modeling language UML(统一建模语言),是一种用于软件系统分析和设计的语言工具,它用于帮助软件开发人员进行思考和记录思路的结果。UML本身是一套符号的规定,就像数学符号和化学符号一样&…...
【Python】【进阶篇】二十六、Python爬虫的Scrapy爬虫框架
目录 二十六、Python爬虫的Scrapy爬虫框架26.1 Scrapy下载安装26.2 创建Scrapy爬虫项目1) 创建第一个Scrapy爬虫项目 26.3 Scrapy爬虫工作流程26.4 settings配置文件 二十六、Python爬虫的Scrapy爬虫框架 Scrapy 是一个基于 Twisted 实现的异步处理爬虫框架,该框架…...
PyTorch 深度学习实用指南:6~8
原文:PyTorch Deep Learning Hands-On 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何实现目…...
数据湖 Hudi 核心概念
文章目录 什么是 Hudi ?Hudi 是如何对数据进行管理的?Hudi 表结构Hudi 核心概念 什么是 Hudi ? Hudi 是一个用于处理大数据湖的开源框架。 大数据湖是指一个大规模的、中心化的数据存储库,其中包含各种类型的数据,如结构化数据、半结构化…...
爬虫请求头Content-Length的计算方法
重点:使用node.js 环境计算,同时要让计算的数据通过JSON.stringify从对象变成string。 1. Blob size var str 中国 new Blob([str]).size // 6 2、Buffer.byteLength # node > var str 中国 undefined > Buffer.byteLength(str, utf8) 6 原文…...
Open Inventor 2023.1 Crack
发行说明 Open Inventor 2023.1(次要版本) 文档于 2023 年 4 月发布。 此版本中包含的增强功能和新功能: Open Inventor 10 版本编号更改体积可视化 单一分辨率的体绘制着色器中与裁剪和 ROI 相关的新功能MeshVizXLM 在 C 中扩展的剪辑线提…...
【华为OD机试真题】查找树中元素(查找二叉树节点)(javaC++python)100%通过率
查找树中元素 知识点树BFSQ搜索广搜 时间限制:1s空间限制:256MB限定语言:不限 题目描述: 已知树形结构的所有节点信息,现要求根据输入坐标(x,y)找到该节点保存的内容 值;其中: x表示节点所在的层数,根节点位于第0层,根节点的子节点位于第1层,依次类推; y表示节…...
常用设计模式
里氏替换原则:子类可以扩展父类的功能,但是不要更改父类的已经实现的方法子类对父类的方法尽量不要重写和重载。(我们可以采用final的手段强制来遵循)创建型模式 单例模式:维护线程数据安全 懒汉式 public class Test{ 饿汉式 private static final Test…...
时序分析 49 -- 贝叶斯时序预测(一)
贝叶斯时序预测(一) 时序预测在统计分析和机器学习领域一直都是一个比较重要的话题。在本系列前面的文章中我们介绍了诸如ARIMA系列方法,Holt-Winter指数平滑模型等多种常用方法,实际上这些看似不同的模型和方法之间都具有千丝万缕…...
从传统管理到智慧水务:数字化转型的挑战与机遇
概念 智慧水务是指利用互联网、物联网、大数据、人工智能等技术手段,将智能化、信息化、互联网等技术与水务领域相结合,通过感知、传输、处理水质、水量、水价等数据信息,对水资源进行全面监测、综合管理、智能调度和优化配置的智能化水务系…...
ROS学习第十八节——launch文件(详细介绍)
1.概述 关于 launch 文件的使用已经不陌生了,之前就曾经介绍到: 一个程序中可能需要启动多个节点,比如:ROS 内置的小乌龟案例,如果要控制乌龟运动,要启动多个窗口,分别启动 roscore、乌龟界面节点、键盘控制节点。如果…...
javaweb在校大学生贷款管理系统ns08a9
1系统主要实现:学生注册、填写详细资料、申请贷款、学校审核、银行审核、贷后管理等功能, (1) 学生注册:学生通过注册用户,提交自己的详细个人资料,考虑现实应用中的安全性,资料提交后不可修改;…...
分布式之搜索解决方案es
一 ES初识 1.1 概述 ElasticSearch:是基于 Lucene 的 Restful 的分布式实时全文搜索引擎,每个字段都被索引并可被搜索,可以快速存储、搜索、分析海量的数据。是ELK的一个组成,是一个产品,而且是非常完善的产品,ELK代表…...
CSDN 编程竞赛四十六期题解
地址:CSDN 编程竞赛四十六期 思路:通过找规律可以知道,在周期第一个位置的数的下标都有一个规律:除以三的余数为 1 。而第二个位置,第三个位置的余数分别为 2 , 0 。 因此可以开一个长度为 3 的总和数组&am…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
