SLAM论文速递【SLAM—— RDS-SLAM:基于语义分割方法的实时动态SLAM—4.24(1)
论文信息
题目:
RDS-SLAM:Real-Time Dynamic SLAM Using Semantic Segmentation Methods
RDS-SLAM:基于语义分割方法的实时动态SLAM
论文地址:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9318990
发表期刊:
IEEE Access ( Volume: 9)
开源代码
https://github.com/yubaoliu/RDS-SLAM.git
论文标签
摘要
在典型的视觉同时定位与地图构建(vSLAM)算法中,场景刚性是一个很强的假设。这种强大的假设限制了大多数vSLAM在动态现实环境中的使用,而动态现实环境是增强现实、语义地图、无人驾驶汽车和服务机器人等几个相关应用的目标。人们提出了许多解决方案,使用不同类型的语义分割方法(例如Mask R-CNN,SegNet)来检测动态对象并删除异常值。然而,据我们所知,这类方法在其体系结构中需要在跟踪线程中等待语义结果,并且处理时间依赖于所使用的分割方法。本文提出了RDS-SLAM,一种基于ORB-SLAM3的实时视觉动态SLAM算法,增加了一个语义线程和一个基于语义的优化线程,用于在动态环境中实时鲁棒跟踪和建图。这些新线程与其他线程并行运行,因此跟踪线程不再需要等待语义信息。此外,本文还提出了一种算法来获取尽可能最新的语义信息,从而使不同速度的分割方法能够以统一的方式使用。我们使用移动概率更新和传播语义信息,将其保存在地图中,并使用数据关联算法从跟踪中删除异常值。
内容简介
由于语义线程与跟踪线程并行运行,我们使用映射点来保存和共享语义信息。如图1所示,我们利用移动概率更新和传播语义信息,并根据移动概率阈值将地图点分为静态、动态和未知三类。这些分类的地图点将用于在跟踪中选择尽可能稳定的数据关联。本文的主要贡献包括:
(1)提出了一种新的基于语义的实时动态vSLAM算法RDS-SLAM,使得跟踪线程不再需要等待语义结果。
(2)提出了一种关键帧选择策略,将尽可能最新的语义信息作为去除异常值的关键帧,以一种统一的方式与任何不同速度的语义分割方法进行对比。
(3)实验结果表明,所提方法的实时性优于现有的使用TUM的同类方法数据集。
每一帧都将首先通过跟踪线程。在上一帧跟踪后估计当前帧相机的初始姿态,并通过局部地图跟踪进一步优化。然后选取关键帧用于语义跟踪、语义优化和局部线程映射;在跟踪和局部映射线程中修改多个模型,利用语义信息去除摄像机自运动估计中的异常值。在跟踪线程中,提出了一种数据关联算法,尽可能地利用静态对象的特征。语义线程与其他语义线程并行运行,从而不阻塞跟踪线程,将语义信息保存到图谱中。利用语义标签生成先验动态对象的掩码图像;利用语义信息更新与关键帧中特征点匹配的地图点移动概率;最后,利用图谱中的语义信息对相机位姿进行优化。
评价
提出了一种基于RGB-D相机的动态环境下基于语义的实时视觉SLAM (RDS-SLAM)系统。对ORB-SLAM3进行了改进,增加了语义跟踪线程和语义优化线程,利用语义信息消除动态对象的影响。这些新线程与跟踪线程并行运行,因此,跟踪线程不会因为等待语义信息而阻塞。提出了一种语义分割关键帧选择策略,以获取尽可能最新的语义信息,以应对不同速度的分割方法。我们使用移动概率更新和传播语义信息,使用数据关联算法检测和删除跟踪中的异常值。使用TUM数据集评估了算法的跟踪性能和处理时间。与主流vslam算法的对比实验表明,该算法具有良好的跟踪性能,能够实时地跟踪每一帧图像。该系统的最快速度约为30HZ,与ORB-SLAM3的跟踪速度相近。在未来的工作中,我们将尝试1)在真实的机器人上部署该系统,2)将该系统扩展到立体相机和单相机系统,以及3)构建语义地图
阅读总结
文章解决的问题如下:
1、ORB-SLAM3不能解决动态场景的问题
2、大多数动态SLAM实时性不够的问题
文章提出的解决方法如下:
1、改进ORB-SLAM3增加语义分割的功能
2、提出语义线程和跟踪线程并行的策略(非阻塞模型)
总的来说,该文章的工作量比较大,介绍得比较仔细,值得借鉴和引用。其中的利用移动概率传播来剔除动态特征点的方法还没研究
相关文章:

SLAM论文速递【SLAM—— RDS-SLAM:基于语义分割方法的实时动态SLAM—4.24(1)
论文信息 题目: RDS-SLAM:Real-Time Dynamic SLAM Using Semantic Segmentation Methods RDS-SLAM:基于语义分割方法的实时动态SLAM论文地址: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber9318990发表期刊: IEEE Access ( Volum…...

OJ练习第82题——填充书架
填充书架 力扣链接:1105. 填充书架 题目描述 给定一个数组 books ,其中 books[i] [thicknessi, heighti] 表示第 i 本书的厚度和高度。你也会得到一个整数 shelfWidth 。 按顺序 将这些书摆放到总宽度为 shelfWidth 的书架上。 先选几本书放在书架…...
OHOS IDE和SDK的安装方法
参照OpenHarmony应用开发环境安装流程,下载安装OHOS的IDE,过程中需要全程联网。 IDE,安装至D:\Tools\Huawei\DevEcoStudio。 IDE安装成功之后,按照提示下载安装HOS和OHOS的SDK。 nodejs,安装至D:\Tools\Huawei\nodejs…...
New Year Garland(计数类DP)
New Year Garland 题意 用m种颜色的球装饰n层的圣诞树,圣诞树的第i层由 l i l_{i} li个彩球串成,且同一层相邻的球颜色不同,相邻的层之间彩球颜色的集合不同,问有多少种方案,对p取模。 分析 首先先计算每一…...

32岁阿里P7,把简历改成不知名小公司,学历改成普通本科,工作内容不变,投简历全挂!...
hr靠什么来招人? 一位猎头讲述了自己和朋友打赌的故事: 朋友在阿里云,32岁,P7,他把简历上的公司改成不知名,学历改成普通本科,工作内容不变,结果投其他公司(比如京东&…...

从三室心脏MRI影像检测主动脉瓣病变
Detecting Aortic Valve Pathology from the 3-Chamber Cine Cardiac MRI View 摘要 背景 心脏磁共振(CMR)是量化心脏容量、功能和血流量的金标准。定制的MR脉冲序列定义了对比机制,采集几何形状和定时,可以在CMR期间应用,以实现独特的组织…...

【JavaWeb】JavaScript
1、JavaScript 介绍 Javascript 语言诞生主要是完成页面的数据验证。因此它运行在客户端,需要运行浏览器来解析执行 JavaScript 代码。 JS 是 Netscape 网景公司的产品,最早取名为 LiveScript;为了吸引更多 java 程序员。更名为 JavaScript。 JS 是弱…...
Apache Doris 1.2.4 Release 版本正式发布|版本通告
亲爱的社区小伙伴们,我们很高兴地宣布,Apache Doris 于 2023 年 4 月 27 日迎来 1.2.4 Release 版本的正式发布!在 1.2.4 版本中,Doris 团队已经修复了自 1.2.3 版本发布以来近 150 个问题或性能改进项。同时,1.2.4 版…...

【C++STL】map
文章目录 一. map的介绍二. map的使用结束语 一. map的介绍 map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元素在map中,键值key通常用于排序和唯一地标识元素,而value中存储与此键值…...
vue2项目PC端如何适配不同分辨率屏幕
项目构建:基于vue-cli3构建,使用postcss-px2rem px2rem-loader进行rem适配 实现原理:每次打包,webpack通过使用插件postcss-px2rem,帮我们自动将px单位转换成rem单位前方有坑:UI框架部分组件使用JavaScript…...

CorelDRAW2023最新版本图像设计软件
CorelDRAW 2023作为最新版的图像设计软件,在功能上做了较大提升,主要新的功能特性如下: 1. 全新界面设计:采用简约现代的 UI 设计,菜单和工具重新组织,更加直观易用。提供自动提示与设计指导,易于上手。 2. 智能工具与提示:运用 AI技术对用户操作行为和设计习惯进行分析,给出…...

第64章 树型结构数据的前端渲染渲染显示示例
1 \src\views\TreeTestView.vue <template> <div class"wrap"> <!--注意:1、“回到顶部”组件及其回滚内容都必须包含到同1个div容器中。--> <!-- 2、div容器中必须有1个唯1性的样式类(例如:wrap)…...

超级国际象棋:第二个里程碑已完成
获取Cartesi资助的项目的最新进展,现在将完全去中心化的Web3国际象棋带到你的手中 “Ultrachess是一个完全基于区块链的国际象棋应用程序,由Cartesi Rollup技术支持,允许用户将真实价值投入到比赛中,不仅仅是他们的Elo分数。 此…...
vue3 HTML 和静态资源
目录 静态资源可以通过两种方式进行处理: URL 转换规则 public 文件夹 何时使用 public 文件夹 public/index.html 文件是一个会被 html-webpack-plugin 处理的模板。在构建过程中,资源链接会被自动注入。另外,Vue CLI 也会自动注入 re…...

5G基站外市电改造建设方案 (ppt可编辑)
本资料来源公开网络,仅供个人学习,请勿商用,如有侵权请联系删除 外市电定义及分类 定义:由供电部门提供的专用高压电源或非专用高压电源或低压电源均称为市电。分类: (1)按电压等级分类 ①提供…...

C++ 类和对象(上)
类 面向对象的三大特性:封装,继承,多态 C语言结构体中只能定义变量,在C中,结构体内不仅可以定义变量,也可以定义函数。比如: 之前在数据结构初阶中,用C语言方式实现的栈,…...

【BIM+GIS】BIM模型导入GIS软件之前的一些处理设置
文章目录 一、模型位置发生偏移二、模型对象丢失或增加三、模型材质发生变化四、导出过程缓慢五、模型属性批量丢失一、模型位置发生偏移 在视图→可见性/图形替换模型类别→场地(VV可见性快捷),勾选项目基点。 单击选中项目基点,在属性中修改几点坐标。 即使修改了项目基…...
js FileReader的常用使用方法
FileReader 对象允许 Web 应用程序异步读取存储在用户计算机上的文件(或原始数据缓冲区)的内容,使用 File 或 Blob 对象指定要读取的文件或数据。 主要的读取方法: readAsArrayBuffer(): 开始读取指定的 Blob 中的内…...

网络威胁情报:数据的力量
在一个日益互联和数字化的世界中,网络威胁已成为一项重大挑战,可能危及您组织的声誉、财务稳定性和整体运营效率。 事实上,根据 IBM 2022 年的一份报告,数据泄露的平均成本现在为 435 万美元。 鉴于网络威胁的重要性和影响日益突…...
shell:清理指定目录中指定天数之前的旧文件
前言 我们在服务器运行一些服务经常会产生很多临时文件,而有些临时文件不定期处理很容易就打满了整个磁盘;所以有必要去定期清理,基于这个需求我们就可以搞一个脚本结合crontab或者服务调度这些来使用; 脚本实现 #!/bin/bash# …...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...