数据埋点(Data buried point)的应用价值剖析
一、什么是数据埋点?
数据埋点指在应用中特定的流程中收集一些信息,用来跟踪应用使用的状况,后续用来进一步优化产品或是提供运营的数据支撑。比如访问数(Visits),访客数(Visitor),停留时长(Time On Site),页面浏览数 (Page Views) 和跳出率 (Bounce Rate)等。
例如:使用某东电商平台,你在某年某月某日的几时几分几秒登录的平台,会有专门的数据表记录下来;你在什么时刻浏览了什么商品,也会有专门的数据表记录。你在平台上的任何行为,对于企业来说都是至关重要的数据,我们就可以做埋点,等待着用户去触发,进而得到用户的行为数据。
二、数据埋点的方式
数据埋点的主流有两种方式:
1.本公司技术人员在公司研发的产品中注入代码统计功能,并搭建起相应的后台查询。
2.借助第三方统计工具实现埋点功能。
如果是产品早期,通常会使用第二种方式来采集数据,并直接使用第三方分析工具进行基本的分析。而对于那些对数据安全比较重视,业务又相对复杂的公司则通常是使用第一种方式采集数据,并搭建相应的数据产品实现其数据应用或是分析的诉求。
数据埋点分为三个阶段:
初级:在产品流程关键部位植入相关统计代码,用来追踪每次用户的行为,统计关键流程的使用程度。
中级:在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为。
高级:与研发及数据分析师团队合作,通过数据埋点还原出用户画像及用户行为,建立数据分析后台,通过数据分析、优化产品。
无论处于哪个阶段,数据埋点的信息收集可以大致分为两种:页面统计和操作行为统计。
三、代码埋点的优缺点
优点
1.使用者控制精准,可以非常精确地选择什么时候发送数据。
2.使用者可以比较方便地设置自定义属性、自定义事件,传递比较丰富的数据到服务端。
缺点
1.埋点代价比较大,每一个控件的埋点都需要添加相应的代码,不仅工作量大,而且限定了必须是技术人员才能完成。
2.更新代价比较大,每一次更新,都需要更新埋点方案,然后通过各个应用市场进行分发,而且有的用户还不一定更新,这样你就获取不到这批用户数据。
四、数据埋点的注意事项
尽量做到事无巨细,每一步用户行为全都需要获取数据。同级页面操作和同页面多来源为一个事件,不同的操作内容和页面来源作为事件的属性进行采集。用户的点击,若与下一个页面的浏览是直接触达可只埋一个事件。
数据埋点的前提是,团队需要首先明确产品的目标以及当下的首要问题。产品可能产生的用户行为数据纷繁复杂,清晰的目标能让项目团队避免迷失在数据的海洋中,从而耗费大量的时间和机成本。
最开始进行需求梳理时,需要从整体进行考虑,要给给深层次和具体的需求。不要等到开发埋好指标结果出来时却不是自己想要的,需要重新埋点。另外,后续产品版本更新迭代了,原有埋点不可用,也需要重新埋点。
数据采集方案要想清楚,哪些应该在前端埋点,哪些应该在后端埋点,埋点采集SDK如何正确使用在还没了解清楚时就急于上手。数据统计口径需要确定清楚,且和开发保持良好沟通,将埋点的具体采集时机正确传达给开发,导致最终埋点实现的不是自己想要定义的指标。
在分析的一开始,建议采集少数的用户行为。选择少量、重要的用户行为开始记录和分析,这样很快就能有成果产出。另外用户行为不等同于应用的页面或点击操作,用户行为是更加具体的一个事件定义。
埋点结束后,测试一般只会看一下埋点是否有数据返回,而不会一个个是对数据是否有收到以及是否准确。这个时候需要我们在有一定数据量积累的时候,对数据的有无和准确性进行验证
五、数据埋点的意义
数据埋点可以根据用户在APP上的一系列操作线索,提炼有用的信息,进行数据分析。重点不在于埋点的作用,其实在于获取埋点数据后的二次加工,如何分析输出业务分析结论。
1、分析运营机制的合理性
如移动APP上大多都有用户分享的功能,一般的营销手段是通过老拉新的方式,运营设定一些奖励机制,用来提高APP的注册量。
提前在用户分享键返回后台重新进入购买页面埋点,就能记录到页面的访问次数和转化率,用于分析奖励机制对用户的刺激性,指导策略方向。
2、分析产品功能的合理性
如产品设计了新功能想提高下用户的满意度。提前在新功能的各个按钮上进行埋点,就能获取到用户使用新功能的次数,以及在新功能的使用行为,可以分析用户是否对新功能比较感兴趣,页面的跳转设置是否合理等。
3、分析用户消费行为,挖掘流失点
如老板问你为什么最近收益这么少。在用户消费的核心页面和按钮进行埋点,就能记录到每个流程的转化率,用于分析用户漏斗的哪一个阶段出现了问题,结合业务输出解决方案。
4、监控产品的流畅性
如产品刚上线阶段,需要监控用户使用过程中,各个页面或按钮响应的流畅性是否存在问题。提前在核心功能页面和按钮进行埋点,就能记录到每个页面和按钮的衔接情况,发现问题及时解决,以免影响用户体验。
5、分析不同渠道的用户行为差异
如市场推广常常需要分析不同渠道的用户转化情况,以便减少推广成本。提前在各个渠道进行埋点,记录各渠道用户在APP中的后续行为,调整推广策略。
相关文章:
数据埋点(Data buried point)的应用价值剖析
一、什么是数据埋点?数据埋点指在应用中特定的流程中收集一些信息,用来跟踪应用使用的状况,后续用来进一步优化产品或是提供运营的数据支撑。比如访问数(Visits),访客数(Visitor),停…...
一文弄懂硬链接、软链接、复制的区别
复制 命令:cp file1 file2 作用:实现对file1的一个拷贝。 限制:可以跨分区,文件夹有效。 效果:修改file1,对file2无影响;修改file2,对file1无影响。删除file1,对file…...
界面组件Telerik ThemeBuilder R1 2023开创应用主题研发新方式!
Telerik DevCraft包含一个完整的产品栈来构建您下一个Web、移动和桌面应用程序。它使用HTML和每个.NET平台的UI库,加快开发速度。Telerik DevCraft提供最完整的工具箱,用于构建现代和面向未来的业务应用程序,目前提供UI for ASP.NET包含一个完…...
在FederatedScope 如何查看clientserver之间的传递的参数大小(通讯量)? 对源码的探索记录
在FederatedScope 如何查看client/server之间的传递的参数大小(通讯量)? 对源码的探索记录 背景需求 想给自己的论文补一个通讯开销对比实验:需要计算出client和server之间传递的信息(例如,模型权重、embedding)总共…...
2023爱分析 · 数据科学与机器学习平台厂商全景报告 | 爱分析报告
报告编委 黄勇 爱分析合伙人&首席分析师 孟晨静 爱分析分析师 目录 1. 研究范围定义 2. 厂商全景地图 3. 市场分析与厂商评估 4. 入选厂商列表 1. 研究范围定义 研究范围 经济新常态下,如何对海量数据进行分析挖掘以支撑敏捷决策、适应市场的快…...
20230215_数据库过程_高质量发展
高质量发展 —一、运营结果 SQL_STRING:‘delete shzc.np_rec_lnpdb a where exists (select * from tbcs.v_np_rec_lnpdbbcv t where a.telnumt.telnum and a.outcarriert.OUTCARRIER and a.incarriert.INCARRIER and a.owncarriert.OWNCARRIER and a.starttimet.STARTTIME …...
【百度 JavaScript API v3.0】LocalSearch 位置检索、Autocomplete 结果提示
地名检索移动到指定坐标 需求 在输入框中搜索,在下拉列表中浮动,右侧出现高亮的列表集。选中之后移动到指定坐标。 技术点 官网地址: JavaScript API - 快速入门 | 百度地图API SDK 开发文档:百度地图JSAPI 3.0类参考 实现 …...
运用Facebook投放,如何制定有效的竞价策略?
广告投放中,我们经常会遇到一个问题,就是不知道什么样的广告适合自己的业务。其实,最简单的方法就是根据我们业务本身进行定位并进行投放。当你了解了广告主所处行业及目标受众后,接下来会针对目标市场进行搜索和定位(…...
大数据框架之Hadoop:HDFS(五)NameNode和SecondaryNameNode(面试开发重点)
5.1NN和2NN工作机制 5.1.1思考:NameNode中的元数据是存储在哪里的? 首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此&am…...
计算机网络 - 1. 体系结构
目录概念、功能、组成、分类概念功能组成分类分层结构概念总结OSI 七层模型应用层表示层会话层传输层网络层数据链路层物理层TCP/IP 四层模型OSI 与 TCP/IP 相同点OSI 与 TCP/IP 不同点为什么 TCP/IP 去除了表示层和会话层五层参考模型概念、功能、组成、分类 概念 …...
银行业上云进行时,OLAP 云服务如何解决传统数仓之痛?
本文节选自《中国金融科技发展概览:创新与应用前沿》,从某国有大行构建大数据云平台的实践出发,解读了 OLAP 云服务如何助力银行实现技术平台化、组件化和云服务化,降低技术应用门槛,赋能业务创新。此外,本…...
特定领域知识图谱融合方案:文本匹配算法之预训练Simbert、ERNIE-Gram单塔模型等诸多模型【三】
特定领域知识图谱融合方案:文本匹配算法之预训练模型SimBert、ERNIE-Gram 文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语…...
【2023最新教程】从0到1开发自动化测试框架(0基础也能看懂)
一、序言 随着项目版本的快速迭代、APP测试有以下几个特点: 首先,功能点多且细,测试工作量大,容易遗漏;其次,代码模块常改动,回归测试很频繁,测试重复低效;最后&#x…...
linux备份命令小记 —— 筑梦之路
Linux dump命令用于备份文件系统。 dump为备份工具程序,可将目录或整个文件系统备份至指定的设备,或备份成一个大文件。 dump命令只可以备份ext2/3/4格式的文件系统, centos7默认未安装dump命令,可以使用yum install -y dump安…...
vue项目(vue-cli)配置环境变量和打包时区分开发、测试、生产环境
1.打包时区分不同环境在自定义配置Vue-cli 的过程中,想分别通过.env.development .env.test .env.production 来代表开发、测试、生产环境。NODE_ENVdevelopment NODE_ENVtest NODE_ENVproduction本来想使用上面三种配置来区分三个环境,但是发现使用test…...
Python 命名规范
Python 命名规范 基本规范 类型公有内部备注Packagepackage_namenone全小写下划线式驼峰Modulemodule_name_module_name全小写下划线式驼峰ClassClassName_ClassName首字母大写式驼峰Methodmethod_nameprotected: _method_name private: __method_name全小写下划线式驼峰Exce…...
操作系统——2.操作系统的特征
这篇文章,我们来讲一讲操作系统的特征 目录 1.概述 2.并发 2.1并发概念 2.1.1操作系统的并发性 3.共享 3.1共享的概念 3.2共享的方式 4.并发和共享的关系 5.虚拟 5.1虚拟的概念 5.2虚拟小结 6.异步 6.1异步概念 7.小结 1.概述 上一篇文章,我们…...
【计算机网络期末复习】第六章 应用层
✍个人博客:https://blog.csdn.net/Newin2020?spm1011.2415.3001.5343 📣专栏定位:为想复习学校计算机网络课程的同学提供重点大纲,帮助大家渡过期末考~ 📚专栏地址:https://blog.csdn.net/Newin2020/arti…...
TypeScript基本教程
TS是JS的超集,所以JS基础的类型都包含在内 起步安装 npm install typescript -g运行tsc 文件名 基础类型 Boolean、Number、String、null、undefined 以及 ES6 的 Symbol 和 ES10 的 BigInt。 1 字符串类型 字符串是使用string定义的 let a: string 123 //普…...
使用Windows API实现本地音频采集
Windows API提供了Winmm(Windows多媒体)库,其中包括了音频设备相关的函数,可以用来实现音频设备的枚举和测试。 下面是一个简单的示例代码,演示了如何使用Winmm库中的waveInGetNumDevs()函数来枚举计算机上的音频输入…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
