Python优化算法—遗传算法
Python优化算法—遗传算法
- 一、前言
- 二、安装
- 三、遗传算法
- 3.1 自定义函数
- 3.2 遗传算法进行整数规划
- 3.3 遗传算法用于旅行商问题
- 3.4 使用遗传算法进行曲线拟合
一、前言
优化算法,尤其是启发式的仿生智能算法在最近很火,它适用于解决管理学,运筹学,统计学里面的一些优化问题。比如线性规划,整数规划,动态规划,非线性约束规划,甚至是超参数搜索等等方向的问题。
但是一般的优化算法还是matlab里面用的多,Python相关代码较少。
我在参考了一些文章的代码和模块之后,决定学习scikit-opt
这个模块。这个优化算法模块对新手很友好,代码简洁,上手简单。而且代码和官方文档是中国人写的,还有很多案例,学起来就没什么压力。
缺点是包装的算法种类目前还不算多,只有七种:(差分进化算法、遗传算法、粒子群算法、模拟退火算法、蚁群算法、鱼群算法、免疫优化算法)
本次带来的是数学建模里面经常使用的遗传算法的使用演示。
二、安装
首先安装模块,在cmd
里面或者anaconda prompt
里面输入:
pip install scikit-opt
对于当前开发人员版本:
git clone git@github.com:guofei9987/scikit-opt.git
cd scikit-opt
pip install .
三、遗传算法
3.1 自定义函数
UDF(用户定义函数)现已推出!
例如,您刚刚制定了一种新型函数。现在,你的函数是这样的:
f=0.5+sin2(x12+x22)−0.51+0.001(x12+x22)f = 0.5 + \frac{sin^2(x_1^2 + x_2^2) - 0.5}{1 + 0.001 (x_1^2 + x_2^2)} f=0.5+1+0.001(x12+x22)sin2(x12+x22)−0.5
该函数有大量的局部最小值,具有很强的冲击力,在(0,0) 处的全局最小值,值为 0。
import numpy as np
def schaffer(p):x1, x2 = px = np.square(x1) + np.square(x2)return 0.5 + (np.square(np.sin(x)) - 0.5) / np.square(1 + 0.001 * x)
导入和构建 ga :(遗传算法)
from sko.GA import GA
ga = GA(func=schaffer, n_dim = 2, size_pop = 100, max_iter = 800, prob_mut = 0.001, lb = [-1, -1], ub = [1, 1], precision = 1e-7)
best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)
运行结果为:
可以看到基本找到了全局最小值和对应的x 。
画出迭代次数的图:
import pandas as pd
import matplotlib.pyplot as plt
Y_history = pd.DataFrame(ga.all_history_Y)
fig, ax = plt.subplots(2, 1)
ax[0].plot(Y_history.index, Y_history.values, '.', color = 'red')
Y_history.min(axis = 1).cummin().plot(kind = 'line')
plt.show()
GA算法的参数详解:
输入参数:
输入参数 | 默认值 | 参数的意义 |
---|---|---|
func | - | 目标函数 |
n_dim | - | 目标函数的维度 |
size_pop | 50 | 种群规模 |
max_iter | 200 | 最大迭代次数 |
prob_mut | 0.001 | 变异概率 |
lb | -1 | 每个自变量的最小值 |
ub | 1 | 每个自变量的最大值 |
constraint_eq | 空元组 | 等式约束 |
constraint_ueq | 空元组 | 不等式约束 |
precision | 1e-7 | 精确度,int / float或者它们组成的列表 |
输出参数:
GA & GA_TSP
输出参数 | 参数的意义 |
---|---|
ga.generation_best_X | 每一代的最优函数值对应的输入值 |
ga.generation_best_Y | 每一代的最优函数值 |
ga.all_history_FitV | 每一代的每个个体的适应度 |
ga.all_history_Y | 每一代每个个体的函数值 |
3.2 遗传算法进行整数规划
在多维优化时,想让哪个变量限制为整数,就设定 precision 为 整数 即可。
例如,我想让我的自定义函数的某些变量限制为整数+浮点数(分别是整数,整数,浮点数),那么就设定 precision=[1, 1, 1e-7]
例子如下:
from sko.GA import GA
demo_func = lambda x: (x[0] - 1) ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2
ga = GA(func = demo_func, n_dim = 3, max_iter = 500, lb = [-1, -1, -1], ub = [5, 1, 1], precision = [1,1,1e-7])
best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)
可以看到第一个、第二个变量都是整数,第三个就是浮点数了 。
3.3 遗传算法用于旅行商问题
商旅问题(TSP)就是路径规划的问题,比如有很多城市,你都要跑一遍,那么先去哪个城市再去哪个城市可以让你的总路程最小。
实际问题需要一个城市坐标数据,比如你的出发点位置为(0,0),第一个城市离位置为(x1,y1)(x_1,y_1)(x1,y1),第二个为(x2,y2)(x_2,y_2)(x2,y2)…这里没有实际数据,就直接随机生成了。
import numpy as np
from scipy import spatial
import matplotlib.pyplot as plt
num_points = 50
points_coordinate = np.random.rand(num_points, 2) # generate coordinate of points
points_coordinate
这里定义的是50个城市,每个城市的坐标都在是上图随机生成的矩阵。
然后我们把它变成类似相关系数里面的矩阵:
distance_matrix = spatial.distance.cdist(points_coordinate, points_coordinate, metric='euclidean')
distance_matrix.shape
(50, 50)
这个矩阵就能得出每个城市之间的距离,算上自己和自己的距离(0),总共有2500个数。
定义问题:
def cal_total_distance(routine):num_points, = routine.shapereturn sum([distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points)])
求解问题:
from sko.GA import GA_TSP
ga_tsp = GA_TSP(func = cal_total_distance, n_dim = num_points, size_pop = 50, max_iter = 500, prob_mut = 1)
best_points, best_distance = ga_tsp.run()
我们展示一下结果:
best_distance
画图查看计算出来的路径,还有迭代次数和y的关系:
fig, ax = plt.subplots(1, 2,figsize = (12, 8))
best_points_ = np.concatenate([best_points, [best_points[0]]])
best_points_coordinate = points_coordinate[best_points_, :]
ax[0].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
ax[1].plot(ga_tsp.generation_best_Y)
plt.show()
3.4 使用遗传算法进行曲线拟合
构建数据集:
import numpy as np
import matplotlib.pyplot as plt
from sko.GA import GA
x_true = np.linspace(-1.2, 1.2, 30)
y_true = x_true ** 3 - x_true + 0.4 * np.random.rand(30)
plt.plot(x_true, y_true, 'o')
构建的数据是y=x3−x+0.4y=x^3-x+0.4y=x3−x+0.4,然后加上了随机扰动项。如图:
定义需要拟合的函数(三次函数),然后将残差作为目标函数去求解:
def f_fun(x, a, b, c, d):return a * x ** 3 + b * x ** 2 + c * x + d #三次函数def obj_fun(p):a, b, c, d = presiduals = np.square(f_fun(x_true, a, b, c, d) - y_true).sum()return residuals
求解:
ga = GA(func = obj_fun, n_dim = 4, size_pop = 100, max_iter = 500, lb = [-2] * 4, ub = [2] * 4)
best_params, residuals = ga.run()
print('best_x:', best_params, '\n', 'best_y:', residuals)
可以看到拟合出来的方程为y=0.9656x3−0.0065x2−1.0162x+0.2162y=0.9656x^{3}-0.0065x^{2}-1.0162x+0.2162y=0.9656x3−0.0065x2−1.0162x+0.2162
画出拟合线:
y_predict = f_fun(x_true, *best_params)
fig, ax = plt.subplots()
ax.plot(x_true, y_true, 'o')
ax.plot(x_true, y_predict, '-')
plt.show()
相关文章:

Python优化算法—遗传算法
Python优化算法—遗传算法一、前言二、安装三、遗传算法3.1 自定义函数3.2 遗传算法进行整数规划3.3 遗传算法用于旅行商问题3.4 使用遗传算法进行曲线拟合一、前言 优化算法,尤其是启发式的仿生智能算法在最近很火,它适用于解决管理学,运筹…...
数据埋点(Data buried point)的应用价值剖析
一、什么是数据埋点?数据埋点指在应用中特定的流程中收集一些信息,用来跟踪应用使用的状况,后续用来进一步优化产品或是提供运营的数据支撑。比如访问数(Visits),访客数(Visitor),停…...
一文弄懂硬链接、软链接、复制的区别
复制 命令:cp file1 file2 作用:实现对file1的一个拷贝。 限制:可以跨分区,文件夹有效。 效果:修改file1,对file2无影响;修改file2,对file1无影响。删除file1,对file…...

界面组件Telerik ThemeBuilder R1 2023开创应用主题研发新方式!
Telerik DevCraft包含一个完整的产品栈来构建您下一个Web、移动和桌面应用程序。它使用HTML和每个.NET平台的UI库,加快开发速度。Telerik DevCraft提供最完整的工具箱,用于构建现代和面向未来的业务应用程序,目前提供UI for ASP.NET包含一个完…...

在FederatedScope 如何查看clientserver之间的传递的参数大小(通讯量)? 对源码的探索记录
在FederatedScope 如何查看client/server之间的传递的参数大小(通讯量)? 对源码的探索记录 背景需求 想给自己的论文补一个通讯开销对比实验:需要计算出client和server之间传递的信息(例如,模型权重、embedding)总共…...

2023爱分析 · 数据科学与机器学习平台厂商全景报告 | 爱分析报告
报告编委 黄勇 爱分析合伙人&首席分析师 孟晨静 爱分析分析师 目录 1. 研究范围定义 2. 厂商全景地图 3. 市场分析与厂商评估 4. 入选厂商列表 1. 研究范围定义 研究范围 经济新常态下,如何对海量数据进行分析挖掘以支撑敏捷决策、适应市场的快…...
20230215_数据库过程_高质量发展
高质量发展 —一、运营结果 SQL_STRING:‘delete shzc.np_rec_lnpdb a where exists (select * from tbcs.v_np_rec_lnpdbbcv t where a.telnumt.telnum and a.outcarriert.OUTCARRIER and a.incarriert.INCARRIER and a.owncarriert.OWNCARRIER and a.starttimet.STARTTIME …...

【百度 JavaScript API v3.0】LocalSearch 位置检索、Autocomplete 结果提示
地名检索移动到指定坐标 需求 在输入框中搜索,在下拉列表中浮动,右侧出现高亮的列表集。选中之后移动到指定坐标。 技术点 官网地址: JavaScript API - 快速入门 | 百度地图API SDK 开发文档:百度地图JSAPI 3.0类参考 实现 …...
运用Facebook投放,如何制定有效的竞价策略?
广告投放中,我们经常会遇到一个问题,就是不知道什么样的广告适合自己的业务。其实,最简单的方法就是根据我们业务本身进行定位并进行投放。当你了解了广告主所处行业及目标受众后,接下来会针对目标市场进行搜索和定位(…...

大数据框架之Hadoop:HDFS(五)NameNode和SecondaryNameNode(面试开发重点)
5.1NN和2NN工作机制 5.1.1思考:NameNode中的元数据是存储在哪里的? 首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此&am…...

计算机网络 - 1. 体系结构
目录概念、功能、组成、分类概念功能组成分类分层结构概念总结OSI 七层模型应用层表示层会话层传输层网络层数据链路层物理层TCP/IP 四层模型OSI 与 TCP/IP 相同点OSI 与 TCP/IP 不同点为什么 TCP/IP 去除了表示层和会话层五层参考模型概念、功能、组成、分类 概念 …...
银行业上云进行时,OLAP 云服务如何解决传统数仓之痛?
本文节选自《中国金融科技发展概览:创新与应用前沿》,从某国有大行构建大数据云平台的实践出发,解读了 OLAP 云服务如何助力银行实现技术平台化、组件化和云服务化,降低技术应用门槛,赋能业务创新。此外,本…...
特定领域知识图谱融合方案:文本匹配算法之预训练Simbert、ERNIE-Gram单塔模型等诸多模型【三】
特定领域知识图谱融合方案:文本匹配算法之预训练模型SimBert、ERNIE-Gram 文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语…...

【2023最新教程】从0到1开发自动化测试框架(0基础也能看懂)
一、序言 随着项目版本的快速迭代、APP测试有以下几个特点: 首先,功能点多且细,测试工作量大,容易遗漏;其次,代码模块常改动,回归测试很频繁,测试重复低效;最后&#x…...
linux备份命令小记 —— 筑梦之路
Linux dump命令用于备份文件系统。 dump为备份工具程序,可将目录或整个文件系统备份至指定的设备,或备份成一个大文件。 dump命令只可以备份ext2/3/4格式的文件系统, centos7默认未安装dump命令,可以使用yum install -y dump安…...
vue项目(vue-cli)配置环境变量和打包时区分开发、测试、生产环境
1.打包时区分不同环境在自定义配置Vue-cli 的过程中,想分别通过.env.development .env.test .env.production 来代表开发、测试、生产环境。NODE_ENVdevelopment NODE_ENVtest NODE_ENVproduction本来想使用上面三种配置来区分三个环境,但是发现使用test…...
Python 命名规范
Python 命名规范 基本规范 类型公有内部备注Packagepackage_namenone全小写下划线式驼峰Modulemodule_name_module_name全小写下划线式驼峰ClassClassName_ClassName首字母大写式驼峰Methodmethod_nameprotected: _method_name private: __method_name全小写下划线式驼峰Exce…...

操作系统——2.操作系统的特征
这篇文章,我们来讲一讲操作系统的特征 目录 1.概述 2.并发 2.1并发概念 2.1.1操作系统的并发性 3.共享 3.1共享的概念 3.2共享的方式 4.并发和共享的关系 5.虚拟 5.1虚拟的概念 5.2虚拟小结 6.异步 6.1异步概念 7.小结 1.概述 上一篇文章,我们…...

【计算机网络期末复习】第六章 应用层
✍个人博客:https://blog.csdn.net/Newin2020?spm1011.2415.3001.5343 📣专栏定位:为想复习学校计算机网络课程的同学提供重点大纲,帮助大家渡过期末考~ 📚专栏地址:https://blog.csdn.net/Newin2020/arti…...

TypeScript基本教程
TS是JS的超集,所以JS基础的类型都包含在内 起步安装 npm install typescript -g运行tsc 文件名 基础类型 Boolean、Number、String、null、undefined 以及 ES6 的 Symbol 和 ES10 的 BigInt。 1 字符串类型 字符串是使用string定义的 let a: string 123 //普…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...