当前位置: 首页 > news >正文

评价指标计算

混淆矩阵:

  • 准确率(Precision):记为P_i,表示被正确预测为类别i的样本数占所有被预测为类别i的样本数的比例。

  • 召回率(Recall):记为R_i,表示被正确预测为类别i的样本数占真实类别i的样本数的比例。

  • F1-score:记为F1_i,是准确率和召回率的加权调和平均,用于综合考虑准确率和召回率。

  • macro avg 是计算这些指标的宏平均值。不考虑类别样本数量的差异,将每个类别的指标求和后再除以类别总数N,得到各指标的平均值。具体计算方式如下:

    macro avg-P:(P_macro_avg)= (P_1 + P_2 + … + P_N) / N
    macro avg-R:(R_macro_avg)= (R_1 + R_2 + … + R_N) / N
    macro avg-F1:(F1_macro_avg)= (F1_1 + F1_2 + … + F1_N) / N

  • weighted avg 根据样本权重计算这些指标的加权平均,具体计算公式如下,w_i表示类别i的样本权重:
    weighted avg-P:(P_weighted_avg)= w_1 * P_1 + w_2 * P_2 + … + w_N * P_N
    weighted avg-R(R_weighted_avg)= w_1 * R_1 + w_2 * R_2 + … + w_N * R_N

  • micro avg 计算公式如下:
    micro avg-P = (总体TP) / (总体TP + 总体FP)
    micro avg-R = (总体TP) / (总体TP + 总体FN)
    micro avg-F1 = 2 * (micro avg-P * micro avg-R) / (micro avg-P + micro avg-R)

macro avg: 每个类别的权重相等,不考虑样本在每个类别中的数量差异。关注每个类别的性能表现,对每个类别的平均性能进行评估。

micro avg: 每个样本的权重相等。micro avg更加关注整体的性能表现,对样本数量较多的类别有更大的影响。

"总体TP+总体FP" 的意义在于表示了所有被分类为正例的样本数量,即模型认为是正例的总数。这个指标可以用来评估模型对正例的整体识别能力。较高的总体TP + 总体FP值表示模型对正例的识别能力较强,能够正确地将更多的样本分类为正例。

"总体TP+总体FN" 的意义在于表示了所有真实正例的样本数量,即模型正确识别为正例的总数。这个指标可以用来评估模型对真实正例的召回能力,即模型能够正确地将多少真实正例分类为正例。

真阳性(TP)、假阳性(FP)、真阴性(TN)、假阴性(FN)


相关文章:

评价指标计算

混淆矩阵: 准确率(Precision):记为P_i,表示被正确预测为类别i的样本数占所有被预测为类别i的样本数的比例。 召回率(Recall):记为R_i,表示被正确预测为类别i的样本数占…...

Spring Boot如何实现OAuth2授权?

Spring Boot如何实现OAuth2授权? OAuth2是一种授权框架,用于授权第三方应用程序访问受保护的资源。在Web应用程序中,OAuth2通常用于授权用户访问受保护的API。 在本文中,我们将介绍如何使用Spring Boot实现OAuth2授权。我们将使…...

【最小生成树模型】

最小生成树(Minimum Spanning Tree)模型原理与应用 引言 最小生成树(Minimum Spanning Tree,简称MST)是图论中的经典问题之一,它在实际应用中有着广泛的应用。本文将介绍最小生成树模型的原理和应用&…...

【JavaSE】Java基础语法(三十):HashMap与TreeMap

文章目录 1. HashMap1.1 HashMap集合概述和特点1.2 HashMap集合应用案例 2. TreeMap2.1 TreeMap集合概述和特点2.2 TreeMap集合应用案例一2.3 TreeMap集合应用案例二 3. 总结 1. HashMap 1.1 HashMap集合概述和特点 HashMap底层是哈希表结构的依赖hashCode方法和equals方法保…...

Sangria:类似Nova folding scheme的relaxed PLONK for PLONK

1. 引言 前序博客有: Nova: Recursive Zero-Knowledge Arguments from Folding Schemes学习笔记SuperNova:为多指令虚拟机执行提供递归证明基于Nova/SuperNova的zkVMSangria:PLONK Folding2023年 ZK Hack以及ZK Summit 亮点记 主要见2023…...

【蓝桥杯省赛真题22】python剩余空间问题 青少年组蓝桥杯比赛python编程省赛真题解析

目录 python剩余空间问题 一、题目要求 1、编程实现 二、解题思路...

基于深度学习的高精度牙齿健康检测识别系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度牙齿健康检测识别系统可用于日常生活中检测牙齿健康状况,利用深度学习算法可实现图片、视频、摄像头等方式的牙齿目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数…...

C++的类

类的性质 上文的例子中用到了类,也知道了类的定义方法,其实类还有更多的性质,这些更多的性质完整支持了面向对象编程。 封装 以前说过,程序就是数据和代码的组合。而C又正好提供了对数据的封装功能,这就可以很好的完…...

【网络】- TCP/IP四层(五层)协议 - 网际层(网络层) - 划分子网、构造超网

目录 一、概述二、分类IP地址不合理的地方三、划分子网四、无分类编址方法 一、概述 前面的文章介绍了网络层的网际协议IP,介绍了IP地址的定义,知道了IP地址分为网络标识(网络地址)、主机标识(主机地址)两部分,也清楚了最初IP地址是按照分类被…...

1-网络初识——网络发展史

目录 1.独立模式 2.网络互联 2.1.局域网(Local Area Network,简称LAN) ①基于网线直连 ②基于集线器组建 ③基于交换机组建 ④基于交换机(网口很多)和路由器组建 2.2.广域网(Wide Area Network&…...

《Spring Guides系列学习》guide35 - guide40

要想全面快速学习Spring的内容,最好的方法肯定是先去Spring官网去查阅文档,在Spring官网中找到了适合新手了解的官网Guides,一共68篇,打算全部过一遍,能尽量全面的了解Spring框架的每个特性和功能。 接着上篇看过的gu…...

《算法导论》拓展之 一维二维最近点对问题

一维点对问题 描述:一维最近点对问题是指在给定的一维点集中找到距离最近的两个点。具体来说,给定一维坐标轴上的 n 个点,要找出其中的两个点,使它们的距离最小。 解决办法:解决这个问题的一种常见方法是使用排序和线…...

【C++】动态存储分配

动态存储分配是指在程序运行时根据需要动态地分配和释放内存空间。 C中提供了两个关键的运算符用于动态存储分配:new和delete。 使用new运算符可以在堆(heap)上动态地分配内存空间,并返回所分配内存的首地址。语法如下&#xff1…...

小狗避障-第14届蓝桥杯省赛Scratch中级组真题第4题

[导读]:超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成,后续会不定期解读蓝桥杯真题,这是Scratch蓝桥杯真题解析第139讲。 小狗避障,本题是2023年5月7日举行的第14届蓝桥杯省赛Scratch图形化编程中级组编程第4题&#xf…...

GPT学习笔记-Embedding的降维与2D,3D可视化

嵌入(Embedding)在机器学习和自然语言处理中是一种表示离散变量(如单词、句子或整个文档)的方式,通常是作为高维向量或者矩阵。嵌入的目标是捕捉到输入数据中的语义信息,使得语义相近的元素在嵌入空间中的距…...

Nautilus Chain上线主网,为DeFi和流支付的未来构建基础

近日,加密行业权威平台 Coinmarketcap 发表了一篇名为“Zebec 模块化 Layer3 链 Nautilus Chain上线主网,为 DeFi 和流支付的未来构建基础”的文章,文中对 Zebec 生态公链 Nautilus Chain 的生态进展进行了简要的报道,并对其进行了…...

java设计模式之命令设计模式的前世今生

命令设计模式是什么? 命令设计模式是一种行为型设计模式,它允许将请求封装为对象,并将其传递给调用者,从而使调用者可以在不知道请求具体细节的情况下进行操作。命令模式的主要目的是解耦请求的发送者和接收者,以及通…...

离散系统函数零积点分析

离散系统函数零积点分析 在 Matlab中,系统函数的零极点就可以通过函数 roots 得到。 函数的零极点也可以通过函数 tf2zp 获得,其调用格式为:[Z, P, K] tf2zp(B, A),函数 tf2zp 可以将H(z)的有理分式转换为零极点增益形式&#…...

Karl Guttag:苹果VST MR头显也无法突破AR的物理局限

据近期的爆料、传闻显示,苹果将6月份的WWDC2023上首次公布AR/VR头显。对此,AR/VR光学专家Karl Guttag持怀疑态度,他此前在DisplayDaily的文章中写道,苹果研发AR/VR头显更像是担心错过新技术趋势。回顾过去的一些关键的AR产品&…...

mysql倒库操作遇到的问题

背景:本地windows 10安装了mysql数据库后,需要把远程库的表结构和数据全部导入进来。 操作:导出数据库,导入数据库。 第一步:导出数据库 使用dump命令即可。 登陆mysql数据库 mysql -hhost --default-character-s…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...