当前位置: 首页 > news >正文

代码随想录二刷day20 | 二叉树之 654.最大二叉树 617.合并二叉树 700.二叉搜索树中的搜索 98.验证二叉搜索树

day20

      • 654.最大二叉树
      • 617.合并二叉树
      • 700.二叉搜索树中的搜索
      • 98.验证二叉搜索树

654.最大二叉树

题目链接
解题思路: 本题属于构造二叉树,需要使用前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。

  • 确定递归函数的参数和返回值
    参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。
    代码如下:
TreeNode* constructMaximumBinaryTree(vector<int>& nums)
  • 确定终止条件
    题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。
    那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。

代码如下:

TreeNode* node = new TreeNode(0);
if (nums.size() == 1) {node->val = nums[0];return node;
}
  • 确定单层递归的逻辑

这里有三步工作

  1. 先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。

代码如下:

int maxValue = 0;
int maxValueIndex = 0;
for (int i = 0; i < nums.size(); i++) {if (nums[i] > maxValue) {maxValue = nums[i];maxValueIndex = i;}
}
TreeNode* node = new TreeNode(0);
node->val = maxValue;
  1. 最大值所在的下标左区间 构造左子树

这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。

代码如下:

if (maxValueIndex > 0) {vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);node->left = constructMaximumBinaryTree(newVec);
}
  1. 最大值所在的下标右区间 构造右子树

判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。

代码如下:

if (maxValueIndex < (nums.size() - 1)) {vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());node->right = constructMaximumBinaryTree(newVec);
}

整体代码如下:

class Solution {
public:TreeNode* constructMaximumBinaryTree(vector<int>& nums) {TreeNode* node = new TreeNode(0);if (nums.size() == 1) {node->val = nums[0];return node;}// 找到数组中最大的值和对应的下标int maxValue = 0;int maxValueIndex = 0;for (int i = 0; i < nums.size(); i++) {if (nums[i] > maxValue) {maxValue = nums[i];maxValueIndex = i;}}node->val = maxValue;// 最大值所在的下标左区间 构造左子树if (maxValueIndex > 0) {vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);node->left = constructMaximumBinaryTree(newVec);}// 最大值所在的下标右区间 构造右子树if (maxValueIndex < (nums.size() - 1)) {vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());node->right = constructMaximumBinaryTree(newVec);}return node;}
};

617.合并二叉树

题目链接
解题思路:
递归三部曲来解决:

  1. 确定递归函数的参数和返回值:

首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

代码如下:

TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
  1. 确定终止条件:

因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。

反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

代码如下:

if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
  1. 确定单层递归的逻辑:

单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。

那么单层递归中,就要把两棵树的元素加到一起。

t1->val += t2->val;

接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。

t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。

最终t1就是合并之后的根节点。

代码如下:

t1->left = mergeTrees(t1->left, t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;

此时前序遍历,完整代码就写出来了,如下:

整体代码如下:

class Solution {
public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1// 修改了t1的数值和结构t1->val += t2->val;                             // 中t1->left = mergeTrees(t1->left, t2->left);      // 左t1->right = mergeTrees(t1->right, t2->right);   // 右return t1;}
};

700.二叉搜索树中的搜索

题目链接
解题思路:
二叉搜索树是一个有序树:

  1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 它的左、右子树也分别为二叉搜索树

1.确定递归函数的参数和返回值

递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

代码如下:

TreeNode* searchBST(TreeNode* root, int val)
  1. 确定终止条件

如果root为空,或者找到这个数值了,就返回root节点。

if (root == NULL || root->val == val) return root;
  1. 确定单层递归的逻辑

看看二叉搜索树的单层递归逻辑有何不同。

因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。

如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

代码如下:

TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;

很多录友写递归函数的时候 习惯直接写 searchBST(root->left, val),却忘了 递归函数还有返回值。

递归函数的返回值是什么? 是 左子树如果搜索到了val,要将该节点返回。 如果不用一个变量将其接住,那么返回值不就没了。

所以要 result = searchBST(root->left, val)

整体代码如下:

class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {if (root == NULL || root->val == val) return root;TreeNode* result = NULL;if (root->val > val) result = searchBST(root->left, val);if (root->val < val) result = searchBST(root->right, val);return result;}
};

98.验证二叉搜索树

相关文章:

代码随想录二刷day20 | 二叉树之 654.最大二叉树 617.合并二叉树 700.二叉搜索树中的搜索 98.验证二叉搜索树

day20 654.最大二叉树617.合并二叉树700.二叉搜索树中的搜索98.验证二叉搜索树 654.最大二叉树 题目链接 解题思路&#xff1a; 本题属于构造二叉树&#xff0c;需要使用前序遍历&#xff0c;因为先构造中间节点&#xff0c;然后递归构造左子树和右子树。 确定递归函数的参数…...

python基础知识(十三):numpy库的基本用法

目录 1. numpy的介绍2. numpy库产生矩阵2.1 numpy将列表转换成矩阵2.2 numpy创建矩阵 3. numpy的基础运算4. numpy的基础运算25. 索引 1. numpy的介绍 numpy库是numpy是python中基于数组对象的科学计算库。 2. numpy库产生矩阵 2.1 numpy将列表转换成矩阵 import numpy as …...

【SA8295P 源码分析】16 - TouchScreen Panel (TP)线程函数 tp_recv_thread() 源码分析

【【SA8295P 源码分析】16 - TouchScreen Panel (TP)线程函数 tp_recv_thread 源码分析 一、TP 线程函数:tp_recv_thread()二、处理&上报 坐标数据 cypress_read_touch_data()系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》 本文链接:《【SA8295P 源码…...

Python3数据分析与挖掘建模(13)复合分析-因子关分析与小结

1.因子分析 1.1 探索性因子分析 探索性因子分析&#xff08;Exploratory Factor Analysis&#xff0c;EFA&#xff09;是一种统计方法&#xff0c;用于分析观测变量之间的潜在结构和关联性。它旨在确定多个观测变量是否可以归结为较少数量的潜在因子&#xff0c;从而帮助简化…...

【stable diffusion】图片批量自动打标签、标签批量修改(BLIP、wd14)用于训练SD或者LORA模型

参考&#xff1a; B站教学视频【&#xff1a;AI绘画】新手向&#xff01;Lora训练&#xff01;训练集准备、tag心得、批量编辑、正则化准备】官方教程&#xff1a;https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_README-en.md#automatic-captioning 一、…...

TCP可靠数据传输

TCP的可靠数据传输 1.TCP保证可靠数据传输的方法 TCP主要提供了检验和、序号/确认号、超时重传、最大报文段长度、流量控制等方法实现了可靠数据传输。 检验和 通过检验和的方式&#xff0c;接收端可以检测出来数据是否有差错和异常&#xff0c;假如有差错就会直接丢失该TC…...

Python 私有变量和私有方法介绍

Python 私有变量和私有方法介绍 关于 Python 私有变量和私有方法&#xff0c;通常情况下&#xff0c;开发者可以在方法或属性名称前加上单下划线&#xff08;_&#xff09;&#xff0c;以表示该方法或属性仅供内部使用&#xff0c;但这只是一种约定&#xff0c;并没有强制执行禁…...

Kotlin Lambda表达式和匿名函数的组合简直太强了

Kotlin Lambda表达式和匿名函数的组合简直太强了 简介 首先&#xff0c;在 Kotlin 中&#xff0c;函数是“第一公民”&#xff08;First Class Citizen&#xff09;。因此&#xff0c;它们可以被分配为变量的值&#xff0c;作为其他函数的参数传递或者函数的返回值。同样&…...

uniapp 小程序 获取手机号---通过前段获取

<template><!-- 获取手机号&#xff0c;登录内容 --><view><!-- 首先需要先登录获取code码&#xff0c;然后才可以获取用户唯一标识openid以及会话密钥及用于解密获取手机的加密信息 --><view click"login">登录</view><view…...

面板安全能力持续增强,新增日志审计功能,1Panel开源面板v1.3.0发布

2023年6月12日&#xff0c;现代化、开源的Linux服务器运维管理面板1Panel正式发布v1.3.0版本。 在这一版本中&#xff0c;1Panel进一步增强了安全方面的能力&#xff0c;包括新增SSH配置管理、域名绑定和IP授权支持&#xff0c;以及启用网站防盗链功能。此外&#xff0c;该版本…...

k8s学习-CKS考试必过宝典

目录 CKS考纲集群安装&#xff1a;10%集群强化&#xff1a;15%系统强化&#xff1a;15%微服务漏洞最小化&#xff1a;20%供应链安全&#xff1a;20%监控、日志记录和运行时安全&#xff1a;20% 报名模拟考试考试注意事项考前考中考后 参考 CKS考纲 集群安装&#xff1a;10% 使…...

jmeter如何将上一个请求的结果作为下一个请求的参数

目录 1、简介 2、用途 3、下载、简单应用 4、如何将上一个请求的结果作为下一个请求的参数 1、简介 在JMeter中&#xff0c;可以通过使用变量来将上一个请求的结果作为下一个请求的参数传递。 ApacheJMeter是Apache组织开发的基于Java的压力测试工具。用于对软件做压力测…...

JAVA如何学习爬虫呢?

学习Java爬虫需要掌握以下几个方面&#xff1a; Java基础知识&#xff1a;包括Java语法、面向对象编程、集合框架等。 网络编程&#xff1a;了解HTTP协议、Socket编程等。 HTML、CSS、JavaScript基础&#xff1a;了解网页的基本结构和样式&#xff0c;以及JavaScript的基本语…...

距离保护原理

距离保护是反映故障点至保护安装处的距离&#xff0c;并根据距离的远近确定动作时间的一种保护。故障点距保护安装处越近&#xff0c;保护的动作时间就越短&#xff0c;反之就越长&#xff0c;从而保证动作的选择性。测量故障点至保护安装处的距离&#xff0c;实际上就是用阻抗…...

从微观世界的RST包文视角助力企业网络应用故障排查和优化

1. 前言 随着互联网的普及和发展&#xff0c;各行业的业务和应用越来越依赖于网络。然而&#xff0c;网络环境的不稳定性和复杂性使得出现各种异常现象的概率变得更高了。这些异常现象会导致业务无法正常运行&#xff0c;给用户带来困扰&#xff0c;甚至影响企业的形象和利益。…...

企业微信开发,简单测试。

企业微信开发&#xff0c;参考文档&#xff1a; https://github.com/wechat-group/WxJava/wiki...

element日期选择设置默认时间el-date-picker

<el-date-pickerv-model"rangeDate"style"width:350px"type"daterange"value-format"yyyy-MM-dd"change"dataChange"start-placeholder"开始日期"end-placeholder"结束日期"></el-date-picker…...

AB32VG:SDK_AB53XX_V061(3)IO口复用功能的补充资料

文章目录 1.IO口功能复用表格2.功能映射寄存器 FUNCTION03.功能映射寄存器 FUNCTION14.功能映射寄存器 FUNCTION2 AB5301A的官方数据手册很不完善&#xff0c;没有开放出来。我通过阅读源码补充了一些关于IO口功能复用寄存器的资料。 官方寄存器文档&#xff1a;《 AB32VG1_Re…...

UnityVR--组件10--UGUI简单介绍

目录 前言 UI基础组件 1. Canvas 2. EventSystem 3. Image 4. Text/TextMeshPro/InputField 5. Button控件 其他 前言 UGUI是Unity推出的新的UI系统&#xff0c;它与Unity引擎结合得更紧密&#xff0c;并拥有强大的屏幕自适应和更简单的深度处理机制&#xff0c;更容易使用和…...

k8s 探针

1.前言 Kubernetes探针(Probe)是用于检查容器运行状况的一种机制。探针可以检查容器是否正在运行&#xff0c;容器是否能够正常响应请求&#xff0c;以及容器内部的应用程序是否正常运行等。在Kubernetes中&#xff0c;探针可以用于确定容器的健康状态&#xff0c;如果容器的健…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1&#xff1a;HTML/CSS 前端高频面试题2&#xff1a;浏览器/计算机网络 前端高频面试题3&#xff1a;JavaScript 1.什么是强缓存、协商缓存&#xff1f; 强缓存&#xff1a; 当浏览器请求资源时&#xff0c;首先检查本地缓存是否命中。如果命…...