当前位置: 首页 > news >正文

字节跳动后端面试,笔试部分

var code = "7022f444-ded0-477c-9afe-26812ca8e7cb"

背景

笔者在刷B站的时候,看到了一个关于面试的实录,前半段是八股文,后半段是笔试部分,感觉笔试部分的题目还是挺有意思的,特此记录一下。

笔试部分

  • 问题1:SQL
    在这里插入图片描述
    这题考的是 union all 的用法,在这题中就是合并两个查询的结果,但是要注意,union all 合并完的效果是不做任何改变,直接拼在一起,这个要和 union 区分开,union 是会对合并的结果进行去重的,在性能上要劣于 union all,最有意思的还是这个第二问,它需要在这个初始的 SQL 上做改变,来实现查出 A 表的 a 值总次数和 B 表的 a 值总次数,我一开始看的很是懵逼,后来想想肯定不能在 select 这个方面是做文章,而这段 SQL 的特别之处就是使用了 union all 了,往这方面去向,可以得到这样一段 SQL

    SELECT 'a' AS table_name, COUNT(a) AS a_count FROM a
    UNION ALL
    SELECT 'b' AS table_name, COUNT(a) AS a_count FROM b;
    

    查询的结果确实是符合要求的,也结合了 union all 的用法,后续视频里的面试管并没有继续说这个 SQL 题了,这一问就也当作 结束了吧,然后就是最后一问,如果清楚 union all 的用法,那么 count(distinct a) 就是对合并的结果去重了,相当是用了 union 了,所以本质就是问 union 和 union all 的区别和联系:画个图就很好理解了
    在这里插入图片描述

  • 问题2:算法题
    在这里插入图片描述
    这是字节很久之前的笔试题,想不到现在仍然在问,

#include <bits/stdc++.h>using namespace std;bool cinT = false; // 多组数据typedef long long LL;const int N = 1e5 + 10;int n, m, ans;
vector<int> nums;
string s;void dfs(int u, int p, bool eq) {if(u == s.size()) {if(p < n) ans = max(ans, p);return ;}for(int i = 0; i < m; i ++) {if(eq && nums[i] > s[u] - '0') continue;if(eq && nums[i] == s[u] - '0' && u == s.size() - 1) continue;dfs(u + 1, p * 10 + nums[i], eq && nums[i] == s[u] - '0');}
}void solve() {cin >> n; // 给定的数字ncin >> m; // 给定数字集大小for(int i = 0; i < m; i ++) {int x;cin >> x;nums.push_back(x);}s = to_string(n);// 答案的位数比 n 小一位int mxV = 0;for(int i = 0; i < m; i ++) mxV = max(mxV, nums[i]);ans = stoi(string(m - 1, '0' + mxV));// 爆搜的结果的位数固定为 n 的位数dfs(0, 0, true);cout << ans << "\n";
}int main() {cin.tie(0); cout.tie(0);std::ios::sync_with_stdio(false);int T = 1;if(cinT) cin >> T;while(T --) {solve();}return 0;
}

相关文章:

字节跳动后端面试,笔试部分

var code "7022f444-ded0-477c-9afe-26812ca8e7cb" 背景 笔者在刷B站的时候&#xff0c;看到了一个关于面试的实录&#xff0c;前半段是八股文&#xff0c;后半段是笔试部分&#xff0c;感觉笔试部分的题目还是挺有意思的&#xff0c;特此记录一下。 笔试部分 问…...

[JavaScript游戏开发] 2D二维地图绘制、人物移动、障碍检测

系列文章目录 第一章 2D二维地图绘制、人物移动、障碍检测 第二章 跟随人物二维动态地图绘制、自动寻径、小地图显示(人物红点显示) 文章目录 系列文章目录前言一、列计划1.1、目标1.2、步骤 二、使用步骤2.1、准备素材(图片)&#xff1a;草坪、人物(熊猫)、障碍(石头)2.2、初…...

区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型

区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型 目录 区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现基于QRF随机森林分位数回归时间序列区间预测模型&#xff1…...

.NET网络编程——TCP通信

一、网络编程的基本概念 : 1. 网络 就是将不同区域的电脑连接到一起&#xff0c;组成局域网、城域网或广域网。把分部在不同地理区域的计算机于专门的外部设备用通信线路 互联成一个规模大、功能强的网络系统&#xff0c;从而使众多的计算机可以方便地互相传递信息&#xff0c…...

【Python机器学习】实验01 Numpy以及可视化回顾

文章目录 一、Numpy的基础知识实验1 生成由随机数组成的三通道图片&#xff0c;分别显示每个维度图片&#xff0c;并将三个通道的像素四周进行填充&#xff0c;分别从上下左右各填充若干数据。 二、Numpy的线性代数运算实验2 请准备一张图片&#xff0c;按照上面的过程进行矩阵…...

vue3-组件中的变化

1. 路由 1. 安装指令&#xff1a;npm i vue-routernext 2. 创建路由&#xff1a;createRouter2. 异步组件&#xff08;defineAsyncComponent&#xff09; defineAsyncComponent 是用于定义异步组件的函数。defineAsyncComponent 接受一个工厂函数作为参数&#xff0c;这个工厂…...

认识主被动无人机遥感数据、预处理无人机遥感数据、定量估算农林植被关键性状、期刊论文插图精细制作与Appdesigner应用开发

目录 第一章、认识主被动无人机遥感数据 第二章、预处理无人机遥感数据 第三章、定量估算农林植被关键性状 第四章、期刊论文插图精细制作与Appdesigner应用开发 更多推荐 遥感技术作为一种空间大数据手段&#xff0c;能够从多时、多维、多地等角度&#xff0c;获取大量的…...

数学建模的六个步骤

一、模型准备 了解问题的实际背景&#xff0c;明确其实际意义&#xff0c;掌握对象的各种信息&#xff0c;以数学思路来解释问题的精髓&#xff0c;数学思路贯彻问题的全过程&#xff0c;进而用数学语言来描述问题。要求符合数学理论&#xff0c;符合数学习惯&#xff0c;清晰…...

【计算机组成原理】24王道考研笔记——第二章 数据的表示和运算

第二章 数据的表示和运算 一、数值与编码 1.1 进制转换 任意进制->十进制&#xff1a; 二进制<->八进制、十六进制&#xff1a; 各种进制的常见书写方式&#xff1a; 十进制->任意进制&#xff1a;&#xff08;用拼凑法最快&#xff09; 真值&#xff1a;符合人…...

JQ-6 Bootstrap入门到实战;Bootstrap的(优缺点、安装、响应式容器原理、网格系统、响应式工具类、Bootstrap组件);小项目实践

目录 1_认识Bootstrap1.1_概念1.2_起源和历史1.3_Bootstrap优缺点 2_Bootstrap4的安装2.1_方式一 CDN2.2_方式二 : 下载源码引入2.3_方式三 : npm安装 3_Bootstrap初体验4_响应式容器原理4.1_屏幕尺寸的分割点&#xff08;Breakpoints&#xff09;4.2_响应式容器Containers 5_网…...

如何用3D格式转换工具HOOPS Exchange读取颜色和材料信息?

作为应用程序开发人员&#xff0c;非常希望导入部件的图形表示与它们在创作软件中的外观尽可能接近。外观可以在每个B-Rep面的基础上指定&#xff0c;而且&#xff0c;通过装配层次结构的特定路径可以在视觉外观上赋予父/子覆盖。HOOPS ExchangeHOOPS Exchange可捕获有关来自各…...

[Ubuntu 22.04] 安装docker,并设置镜像加速

for pkg in docker.io docker-doc docker-compose podman-docker containerd runc; do sudo apt-get remove $pkg; doneapt install -y curl vim wget gnupg dpkg apt-transport-https lsb-release ca-certificates# 添加Docker的GPG公钥和apt源 #curl -sSL https://download.d…...

如何使用GPT作为SQL查询引擎的自然语言

​生成的AI输出并不总是可靠的&#xff0c;但是下面我会讲述如何改进你的代码和查询的方法&#xff0c;以及防止发送敏感数据的方法。与大多数生成式AI一样&#xff0c;OpenAI的API的结果仍然不完美&#xff0c;这意味着我们不能完全信任它们。幸运的是&#xff0c;现在我们可以…...

Servlet3.0上传文件

页面&#xff1a; <!DOCTYPE html> <html> <head> <meta charset"UTF-8"> <title>文件上传</title> </head> <body> <form action"fileup" enctype"multipart/form-data" method"…...

【ARM Cache 系列文章 6 番外篇 – MMU, MPU, SMMU, PMU 差异与关系】

文章目录 MMU 与 MPU 之间的关系MMU 与 SMMU 之间的关系MMU 与 PMU 之间的关系 上篇文章&#xff1a;ARM Cache 系列文章 5 – 内存屏障ISB/DSB/DMB MMU 与 MPU 之间的关系 MMU&#xff08;Memory Management Unit&#xff09;和MPU&#xff08;Memory Protection Unit&#…...

NetSuite ERP顾问的进阶之路

目录 1.修养篇 1.1“道”是什么&#xff1f;“器”是什么&#xff1f; 1.2 读书这件事儿 1.3 十年计划的力量 1.3.1 一日三省 1.3.2 顾问损益表 1.3.3 阶段课题 2.行为篇 2.1协作 2.2交流 2.3文档管理 2.4时间管理 3.成长篇 3.1概念能力 3.1.1顾问的知识结构 …...

js 新浏览器打开页面

博主gzh&#xff1a;“程序员野区”&#xff0c;回复“加群”,可进博主web前端微信群 效果如下 setTimeout(()>{var url "https://blog.csdn.net/xuelang532777032?typeblog"; //要打开的网页地址var features "height500, width800, top100, left100, …...

jmeter软件测试实验(附源码以及配置)

jmeter介绍 JMeter是一个开源的性能测试工具&#xff0c;由Apache软件基金会开发和维护。它主要用于对Web应用程序、Web服务、数据库和其他类型的服务进行性能测试。JMeter最初是为测试Web应用程序而设计的&#xff0c;但现在已经扩展到支持更广泛的应用场景。 JMeter 可对服务…...

ZooKeeper原理剖析

1.ZooKeeper简介 ZooKeeper是一个分布式、高可用性的协调服务。在大数据产品中主要提供两个功能&#xff1a; 帮助系统避免单点故障&#xff0c;建立可靠的应用程序。提供分布式协作服务和维护配置信息。 2.ZooKeeper结构 ZooKeeper集群中的节点分为三种角色&#xff1a;Le…...

【算组合数】CF1833 F

少见地秒了这道1700&#xff0c;要是以后都这样就好了.... Problem - F - Codeforces 题意&#xff1a; 给定一个数列&#xff0c;让你在这个数列里找一个大小为M的子集&#xff0c;使得极差不超过M 思路&#xff1a; 子集&#xff0c;不是子序列&#xff0c;说明和顺序无…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...