当前位置: 首页 > news >正文

自动驾驶感知系统-毫米波雷达

毫米波雷达就是电磁波,雷达通过发射无线电信号并接收反射信号来测定车辆与物体间的距离,其频率通常介于10~300GHz之间。与厘米波导引头相比,毫米波导引头体积小,质量轻,空间分辨率高;与红外、激光、电视等光学引头相比,毫米波导引头穿透雾、烟、灰尘的能力强;另外,毫米波导引头的抗干扰性能也优于其他微波导引头。
在这里插入图片描述
毫米波工作频率为30300GHZ,波长为110mm,介于厘米波与光波之间,因此毫米波建有微波制导和光电制导的优点。雷达测量的是反射信号的频率转变,进而推测其速度变化。毫米波雷达可以检测30~100m远的物体,高性能毫米波雷达可以探测更远的物体。同时,毫米波雷达不受天气的影响,即使是最恶劣的天气和光照条件下也能正常工作,穿透烟雾的能力很强。毫米波雷达具有全天候,全天时的工作特性,且探测距离远,探测精度高,被广泛应用于车载距离探测,如自适应巡航,碰撞预警,盲区探测,自动紧急制动等。
毫米波雷达的测距和测速原理都是基于多普勒效应,其采集的原始数据基于极坐标系(距离+角度)。其工作时,振荡器会产生一个频率随时间逐渐增加的信号,这个信号遇到障碍物之后,会反射回来,其时延为2倍的距离除以光速。返回的波形和发出的波形之间有频率差,这个频率差是呈线性关系的:物体越远,返回波收到的越晚,那么它跟入射波的频率差就越大。将这两个频率做一个剑法,就可以得到二者频率的差拍频率,通过判断差拍频率的高低就可以判断障碍物的距离。
在自动驾驶汽车领域,车载毫米波雷达通过天线发射毫米波,接收目标反射信号,经后台处理后快速准确地获取汽车车身周围的物理环境信息(如汽车与其他物体之间的相对距离,相对速度、角度、运动方向等),然后根据所探知的物体信息进行目标跟踪和识别分类,进而结合车身动态信息和其他传感器接收的信息进行数据融合,通过中央处理单元(ECU)进行智能处理,经合理决策后,及时对汽车运动执行控制,从而实现自动驾驶。
相比激光雷达,毫米波雷达精度低,可视范围角度偏小,一般需要多个雷达组合使用。毫米波雷达传输的是不可见的电磁波,因此它无法检测上过漆的木头或是塑料,行人的反射波也较弱。同时,毫米波雷达对金属表面非常敏感,一个弯曲的金属表面会被误认为是一个面积很大的表面,因此,马路上的一个小小易拉罐甚至可能被毫米波雷达判断为很大的路障。此外,毫米波雷达在隧道里的效果同样不佳。
为完全实现自动驾驶辅助系统的各项功能,一般需要配置“1长+4中短”一个5个毫米波雷达,目前,全新奥迪A4采用的就使“1长+4短”的5个毫米波雷达的配置。以自动跟车ACC功能为例,一般需要3个毫米波雷达。车正中间安装1个77GHz的长距离雷达(LRR),探测距离150250m,角度为10度左右;车两侧各安装一个24GHz的中距离雷达(MRR),角度都是30度,探测距离在5070m。
毫米波雷达的可用频段有24GHz、60GHz、77GHz和79GHz,主流使用24GHz和77GHz频段,分别用于中短距离和中长距离探测。相比于24GHz频段,77GHz毫米波雷达物体探测分辨率可以提高24倍,测距和测速精度提高35倍,能检测行人和自行车,且设备体积更小,更方便在无人驾驶汽车上部署。因此频段发展趋势是逐渐由24GHz向77GHz过渡的。
1997年,欧洲电信标准学会确认76~77GHz作为防撞雷达专用频道。
2005年,原信息产业部发布要求,将77GHz频段划分给车辆测距雷达。
2012年,工信部将24GHz划分给短距车载雷达,
2015年,日内瓦世界无线电通信大会将77.5GHz78.0GHz频段划分给无线电定位服务,以支持短距高分辨率车载雷达,从而使7681GHz都可用于车载雷达,为全球车载毫米波雷达的频率统一指明了方向。最终车载毫米波雷达将会统一于77GHz频段(76~81GHz),该频段带宽更大,功率水平更高,探测距离更远。
不同波段毫米波雷达的作用
在这里插入图片描述
毫米波雷达的主要问题使存在互相干扰的可能。频率不同的电磁波在传输过程中相互独立,但是频率相近的电磁波会相互叠加,使信号劣化。调频连续波雷达本身不能免疫干扰。随着道路上装载毫米波雷达的车辆增加,相似频段的雷达信号也随之增加,雷达之间的干扰不可避免。干扰信号可以通过直线传播直接干扰,也可以经过物体反射从而间接干扰。这样的结果大大降低了信号的信噪比,甚至会导致雷达致盲。

相关文章:

自动驾驶感知系统-毫米波雷达

毫米波雷达就是电磁波,雷达通过发射无线电信号并接收反射信号来测定车辆与物体间的距离,其频率通常介于10~300GHz之间。与厘米波导引头相比,毫米波导引头体积小,质量轻,空间分辨率高;与红外、激光、电视等光…...

Esp32_Arduino接入腾讯云笔记

ESP32是一款由乐鑫科技(Espressif Systems)推出的双核、低功耗、集成Wi-Fi和蓝牙的单芯片微控制器。它采用了Tensilica Xtensa LX6高性能处理器,具有大量的GPIO引脚、模数转换器、SPI、I2S、UART、PWM、I2C和SD卡接口等功能,可以满…...

python简单入门

python简单入门 文章目录 python简单入门0. 地址链接1. 官网2.2. 下载地址3. 官方文档 1. 第一章1.1 python解释器1.2 基础语法1.2.1 常见数据类型1.2.2 强制类型转换1.2.3 注释1.2.4 运算符1.2.5 字符串1.2.5.1 字符串的定义1.2.5.2 字符串拼接1.2.5.3 格式化字符串1.2.5.3 精…...

如何快速从csv文件搭建一个简单的神经网络模型(回归)

快速搭建一个简单的神经网络预测模型 采用的数据是kaggle的房价预测数据 涉及的数据文件,提取码为:zxcv #导入相关包 import pandas as pd import numpy as np import torch import torch.nn as nn首先读取数据 trainpd.read_csv("path",enc…...

Pytorch深度学习-----DataLoader的用法

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...

macOS Ventura 13.5 (22G74) Boot ISO 原版可引导镜像下载

macOS Ventura 13.5 (22G74) Boot ISO 原版可引导镜像下载 本站下载的 macOS 软件包,既可以拖拽到 Applications(应用程序)下直接安装,也可以制作启动 U 盘安装,或者在虚拟机中启动安装。另外也支持在 Windows 和 Lin…...

【机器学习】 奇异值分解 (SVD) 和主成分分析 (PCA)

一、说明 在机器学习 (ML) 中,一些最重要的线性代数概念是奇异值分解 (SVD) 和主成分分析 (PCA)。收集到所有原始数据后,我们如何发现结构?例如,通过过去 6 天…...

如何用logging记录python实验结果?

做python实验有时候需要打印很多信息在控制台(console),但是控制台的信息不方便回顾和保存,故而可以采用logging将信息存储起来。 先新建一个文件message.log代码如下: import logging logging.basicConfig(filename"messa…...

C语言假期作业 DAY 03

目录 题目 一、选择题 1、已知函数的原型是: int fun(char b[10], int *a); ,设定义: char c[10];int d; ,正确的调用语句是( ) 2、请问下列表达式哪些会被编译器禁止【多选】( ) 3、…...

使用serverless实现从oss下载文件并压缩

公司之前开发一个网盘系统, 可以上传文件, 打包压缩下载文件, 但是在处理大文件的时候, 服务器遇到了性能问题, 主要是这个项目是单机部署.......(离谱), 然后带宽只有100M, 现在用户比之前多很多, 然后所有人的压缩下载请求都给到这一台服务器了, 比如多个人下载的时候带宽问…...

从上到下打印二叉树

题目描述 从上到下打印出二叉树的每个节点,同一层的节点按照从左到右的顺序打印。 例如: 给定二叉树: [3,9,20,null,null,15,7], 返回: [3,9,20,15,7] 算法思想 建立一个vector数组ret用来当做返回的结果数组,建立一个队列用来接收二叉树…...

【推荐】排序模型的调优

【推荐】排序模型的调优 排序模型的选择 排序模型常见的训练方式 样本类别不均衡处理尝试 欠拟合 过拟合 其他问题 排序模型的选择 LR,GBDT,LRGBDT,FM/FFM, 深度模型(wide & deep,DeepFM&#x…...

负载均衡安装配置详解

负载均衡(Load Balancing)是一种将网络流量分布到多个服务器上的技术,以提高系统的性能、可靠性和可扩展性。 在负载均衡中,有一个负载均衡器(Load Balancer),它充当了传入请求的前置接收器。当…...

Java-逻辑控制

目录 一、顺序结构 二、分支结构 1.if语句 2.swich语句 三、循环结构 1.while循环 2.break 3.continue 4.for循环 5.do while循环 四、输入输出 1.输出到控制台 2.从键盘输入 一、顺序结构 按照代码的书写结构一行一行执行。 System.out.println("aaa"); …...

UE 透明渲染次序

附加顺序 用最外面的球, 依次附加里面的球 最后附加的物体优先级最高 附加顺序 用最里面的球, 依次附加外面的球 这样渲染顺序就对了...

【C++】多态原理剖析,Visual Studio开发人员工具使用查看类结构cl /d1 reportSingleClassLayout

author:&Carlton tag:C topic:【C】多态原理剖析,Visual Studio开发人员工具使用查看类结构cl /d1 reportSingleClassLayout website:黑马程序员C tool:Visual Studio 2019 date:2023年7月24日 目…...

vue实现flv格式视频播放

公司项目需要实现摄像头实时视频播放,flv格式的视频。先百度使用flv.js插件实现,但是两个摄像头一个能放一个不能放,没有找到原因。(开始两个都能放,后端更改地址后不有一个不能放)但是在另一个系统上是可以…...

iptables安全技术和防火墙

防火墙:隔离功能 位置:部署在网络边缘或主机边缘,在工作中,防火墙的主要作用是决定哪些数据可以被外网访问以及哪些数据可以进入内网访问,主要在网络层工作 其他类型的安全技术:1、入侵检测系统 2、入侵…...

微信小程序开发5

一、自定义组件-插槽 1.1、什么是插槽 在自定义组件的wxml结构中&#xff0c;可以提供一个<slot>节点(插槽)&#xff0c;用于承载组件使用者提供的wxml结构 1.2、单个插槽 在小程序中&#xff0c;默认每个自定义组件中允许使用一个<slot>进行占位&#xff0c;这种…...

【算法题】2681. 英雄的力量

题目&#xff1a; 给你一个下标从 0 开始的整数数组 nums &#xff0c;它表示英雄的能力值。如果我们选出一部分英雄&#xff0c;这组英雄的 力量 定义为&#xff1a; i0 &#xff0c;i1 &#xff0c;… ik 表示这组英雄在数组中的下标。那么这组英雄的力量为 max(nums[i0],n…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...