当前位置: 首页 > news >正文

数学建模学习(4):TOPSIS 综合评价模型及编程实战

一、数据总览

        需求:我们需要对各个银行进行评价,A-G为银行的各个指标,下面是银行的数据:

 二、代码逐行实现

清空代码和变量的指令

clear;clc;

层次分析法

每一行代表一个对象的指标评分

p = [8,7,6,8;7,8,8,7];%每一行代表一个对象的指标评分

A为自己构造的输入判别矩阵

%A为自己构造的输入判别矩阵
A=[1,3,1,1/3;1/3,1,1/2,1/5;1,2,1,1/3;3,5,3,1];

求特征值特征向量,找到最大特征值对应的特征向量

%%
[n,m]=size(A);
%求特征值特征向量,找到最大特征值对应的特征向量
[V,D]=eig(A);    %求特征值和特征向量  D记录特征值  V代表特征向量
%%

 找到最大的特征值

tzz=max(max(D));     %找到最大的特征值

 找到最大的特征值位置

c1=find(max(D)==tzz);%找到最大的特征值位置

最大特征值对应的特征向量

tzx=V(:,c1);%最大特征值对应的特征向量

 计算权重

quan1 = tzx/sum(tzx);
%%
%赋权重
quan=zeros(n,1);
for i=1:nquan(i,1)=tzx(i,1)/sum(tzx);
end

 一致性检验

Q=quan;
%一致性检验
CI=(tzz-n)/(n-1);
RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
%判断是否通过一致性检验
CR=CI/RI(1,n);
if CR>=0.1fprintf('没有通过一致性检验\n');
elsefprintf('通过一致性检验\n');
end

 显示出所有评分对象的评分值

%显示出所有评分对象的评分值score=P*Q;for i=1:length(score)name=['object_score',num2str(i)];eval([name,'=score(i)'])end

 Topsis层次分析法

待评价的数据

data=[220	6	30	10	10	5
190	8	25	9	8	3
180	8	28	7	7	4
170	7	23	8	7	2];

 负向指标准化处理
 

%负向指标准化处理index=3;for i=1:length(index)data1(:,index(i))=(max(data(:,index(i)))-data(:,index(i)))/(max(data(:,index(i)))-min(data(:,index(i))));
end

 正向指标的标准化处理

%%
%%正向指标准化处理
index_all=1:size(data1,2); 
index_all(index)=[];    % 除负向指标外其余所有指标
index=index_all;
%%
for i=1:length(index)data1(:,index(i))=(data(:,index(i))-min(data(:,index(i))))/(max(data(:,index(i)))-min(data(:,index(i))));
end

 标准化处理

%%标准化处理data1=zscore(data);
% for j=1:size(data1,2)
%     data1(:,j)= data(:,j)./sqrt(sum(data(:,j).^2));
% end

 得到加权后的数据

%得到加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]; %使用求权重的方法求得
R=data1.*w;

 得到最大值和最小值距离

%得到最大值和最小值距离
r_max=max(R);  %每个指标的最大值
r_min=min(R);  %每个指标的最小值
d_z = sqrt(sum([(R -repmat(r_max,size(R,1),1)).^2 ],2)) ;  %d+向量
d_f = sqrt(sum([(R -repmat(r_min,size(R,1),1)).^2 ],2)); %d-向量  
%sum(data,2)对行求和 ,sum(data)默认对列求和

 得到得分

%得到得分
s=d_f./(d_z+d_f );
Score=100*s/max(s);
for i=1:length(Score)fprintf('第%d个投标者百分制评分为:%d\n',i,Score(i));   
end

三、代码整体实现

        下面是matlab实现层次分析法和Topsis综合评价法的代码:

%% 层次分析法
clear;clc;
P=[8,7,6,8;7,8,8,7];%每一行代表一个对象的指标评分
%%
%A为自己构造的输入判别矩阵
A=[1,3,1,1/3;1/3,1,1/2,1/5;1,2,1,1/3;3,5,3,1];
%%
[n,m]=size(A);
%求特征值特征向量,找到最大特征值对应的特征向量
[V,D]=eig(A);    %求特征值和特征向量  D记录特征值  V代表特征向量
%%
tzz=max(max(D));     %找到最大的特征值
%%
c1=find(max(D)==tzz);%找到最大的特征值位置
%%
tzx=V(:,c1);%最大特征值对应的特征向量
%%
quan1 = tzx/sum(tzx);
%%
%赋权重
quan=zeros(n,1);
for i=1:nquan(i,1)=tzx(i,1)/sum(tzx);
end
%%
%%%
Q=quan;
%一致性检验
CI=(tzz-n)/(n-1);
RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
%判断是否通过一致性检验
CR=CI/RI(1,n);
if CR>=0.1fprintf('没有通过一致性检验\n');
elsefprintf('通过一致性检验\n');
end
%%
%显示出所有评分对象的评分值score=P*Q;for i=1:length(score)name=['object_score',num2str(i)];eval([name,'=score(i)'])end%%  TOPSISclc;clear;%%
data=[220	6	30	10	10	5
190	8	25	9	8	3
180	8	28	7	7	4
170	7	23	8	7	2];
%%index=3;for i=1:length(index)data1(:,index(i))=(max(data(:,index(i)))-data(:,index(i)))/(max(data(:,index(i)))-min(data(:,index(i))));
end
%%
%%正向指标准化处理
index_all=1:size(data1,2); 
index_all(index)=[];    % 除负向指标外其余所有指标
index=index_all;
for i=1:length(index)data1(:,index(i))=(data(:,index(i))-min(data(:,index(i))))/(max(data(:,index(i)))-min(data(:,index(i))));
enddata1=zscore(data);
% for j=1:size(data1,2)
%     data1(:,j)= data(:,j)./sqrt(sum(data(:,j).^2));
% end%得到加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]; %使用求权重的方法求得
R=data1.*w;%得到最大值和最小值距离
r_max=max(R);  %每个指标的最大值
r_min=min(R);  %每个指标的最小值
d_z = sqrt(sum([(R -repmat(r_max,size(R,1),1)).^2 ],2)) ;  %d+向量
d_f = sqrt(sum([(R -repmat(r_min,size(R,1),1)).^2 ],2)); %d-向量  
%sum(data,2)对行求和 ,sum(data)默认对列求和
%得到得分
s=d_f./(d_z+d_f );
Score=100*s/max(s);
for i=1:length(Score)fprintf('第%d个投标者百分制评分为:%d\n',i,Score(i));   
end

对应的原理公式,请跳转到下面的链接:

http://t.csdn.cn/HXaGB

相关文章:

数学建模学习(4):TOPSIS 综合评价模型及编程实战

一、数据总览 需求:我们需要对各个银行进行评价,A-G为银行的各个指标,下面是银行的数据: 二、代码逐行实现 清空代码和变量的指令 clear;clc; 层次分析法 每一行代表一个对象的指标评分 p [8,7,6,8;7,8,8,7];%每一行代表一个…...

PHP之Smarty使用以及框架display和assign原理

一、Smarty的下载 进入Smarty官网下载&#xff0c;复制目录libs目录即可http://www.smarty.net/http://www.smarty.net/ 二、使用Smarty&#xff0c;创建目录demo,把libs放进去改名为Smarty 三、引入Smarty配置,创建目录&#xff0c;index.php文件配置 <?php…...

《TCP IP网络编程》第十一章

第 11 章 进程间通信 11.1 进程间通信的基本概念 通过管道实现进程间通信&#xff1a; 进程间通信&#xff0c;意味着两个不同的进程中可以交换数据。下图是基于管道&#xff08;PIPE&#xff09;的进程间通信的模型&#xff1a; 可以看出&#xff0c;为了完成进程间通信&…...

Folx Pro 5 最好用的Mac磁力链接BT种子下载工具

除了迅雷&#xff0c;还有哪个支持磁力链接下载&#xff1f;Mac电脑如何下载磁力链接&#xff1f;经常有小伙伴问老宅。今天&#xff0c;老宅给大家推荐Folx Pro For Mac&#xff0c;Mac系统超好用的磁力下载工具。 Folx是一款功能强大且易于使用的Mac下载管理器&#xff0c;并…...

Redis 数据库的高可用

文章目录 Redis 数据库的高可用一.Redis 数据库的持久化1.Redis 高可用概念2.Redis 实现高可用的技术2.1 持久化2.2 主从复制2.3 哨兵2.4 Cluster集群 3.Redis 持久化3.1 持久化的功能3.2 Redis 提供持久化的方式3.2.1 RDB 持久化3.2.2 AOF 持久化&#xff08;append only file…...

elementPlus dialog组件设置可拖动,当内容高度大于视口高度拖动显示异常的解决办法

elementPlus UI的dialog弹框组件在设置了draggable属性后就可拖动弹框&#xff0c;但是当弹框的内容高度大于视口高度时去拖动弹框就会出现显示问题。 解决办法&#xff08;修改源码&#xff09; 去node_modules下面找到element-plus文件夹&#xff0c;按照以下路径修改onMou…...

亲测解决Git inflate: data stream error (incorrect data check)

Git inflate: data stream error (incorrect data check) error: unable to unpack… 前提是你的repository在github等服务器或者其他路径有过历史备份/副本&#xff0c;不要求是最新版本的&#xff0c;只要有就可能恢复你做的所有工作。 执行git fsck --full检查损坏的文件 在…...

Ansible 自动化运维工具

Ansible 简介 Ansible 自动化运维工具&#xff08;机器管理工具&#xff09;可以实现批量管理多台&#xff08;成百上千&#xff09;主机&#xff0c;应用级别的跨主机编排工具。现在也在自动化管理领域大放异彩。它融合了众多老牌运维工具的优点&#xff0c;Pubbet和Saltstac…...

node.js 爬虫图片下载

主程序文件 app.js 运行主程序前需要先安装使用到的模块&#xff1a; npm install superagent --save axios要安装指定版,安装最新版会报错&#xff1a;npm install axios0.19.2 --save const {default: axios} require(axios); const fs require(fs); const superagent r…...

VAE-根据李宏毅视频总结的最通俗理解

1.VAE的直观理解 先简单了解一下自编码器&#xff0c;也就是常说的Auto-Encoder。Auto-Encoder包括一个编码器&#xff08;Encoder&#xff09;和一个解码器&#xff08;Decoder&#xff09;。其结构如下&#xff1a; 自编码器是一种先把输入数据压缩为某种编码, 后仅通过该编…...

【LangChain】检索器之上下文压缩

LangChain学习文档 【LangChain】检索器(Retrievers)【LangChain】检索器之MultiQueryRetriever【LangChain】检索器之上下文压缩 上下文压缩 LangChain学习文档 概要内容使用普通向量存储检索器使用 LLMChainExtractor 添加上下文压缩(Adding contextual compression with an…...

uniapp 语音文本播报功能

最近uniapp项目上遇到一个需求 就是在接口调用成功的时候加上语音播报 &#xff0c; ‘创建成功’ ‘开始成功’ ‘结束成功’ 之类的。 因为是固定的文本 &#xff0c;所以我先利用工具生成了 文本语音mp3文件&#xff0c;放入项目中&#xff0c;直接用就好了。 这里用到的工…...

腾讯云高IO型云服务器CPU型号处理器主频性能

腾讯云服务器高IO型CVM实例CPU处理器主频性能说明&#xff0c;高IO型云服务器具有高随机IOPS、高吞吐量、低访问延时等特点&#xff0c;适合对硬盘读写和时延要求高的高性能数据库等I/O密集型应用&#xff0c;腾讯云服务器网分享高IO型云服务器IT5和IT3的CPU处理器说明&#xf…...

【数据结构】实验八:树

实验八 树 一、实验目的与要求 1&#xff09;理解树的定义&#xff1b; 2&#xff09;掌握树的存储方式及基于存储结构的基本操作实现&#xff1b; 二、 实验内容 题目一&#xff1a;采用树的双亲表示法根据输入实现以下树的存储&#xff0c;并实现输入给定结点的双亲结点…...

kafka消费者api和分区分配和offset消费

kafka消费者 消费者的消费方式为主动从broker拉取消息&#xff0c;由于消费者的消费速度不同&#xff0c;由broker决定消息发送速度难以适应所有消费者的能力 拉取数据的问题在于&#xff0c;消费者可能会获得空数据 消费者组工作流程 Consumer Group&#xff08;CG&#x…...

【驱动开发day4作业】

头文件代码 #ifndef __HEAD_H__ #define __HEAD_H__ typedef struct{unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int ODR; }gpio_t; #define PHY_LED1_ADDR 0X50006000 #define PHY_LED2_ADDR 0X50007000 #…...

Ubuntu 20.04 Ubuntu18.04安装录屏软件Kazam

1.在Ubuntu Software里面输入Kazam&#xff0c;就可以找不到这个软件&#xff0c;直接点击install就可以了 2.使用方法&#xff1a; 选择Screencast&#xff08;录屏&#xff09; Fullscreen&#xff08;全屏&#xff09;-----Windows&#xff08;窗口&#xff09;--------Ar…...

ADC 的初识

ADC介绍 Q: ADC是什么&#xff1f; A: 全称&#xff1a;Analog-to-Digital Converter&#xff0c;指模拟/数字转换器 ADC的性能指标 量程&#xff1a;能测量的电压范围分辨率&#xff1a;ADC能辨别的最小模拟量&#xff0c;通常以输出二进制数的位数表示&#xff0c;比如&am…...

MMdetection框架速成系列 第07部分:数据增强的N种方法

MMdetection框架实现数据增强的N种方法 1 为什么要进行数据增强2 数据增强的常见误区3 常见的六种数据增强方式3.1 随机翻转&#xff08;RandomFlip&#xff09;3.2 随机裁剪&#xff08;RandomCrop&#xff09;3.3 随机比例裁剪并缩放&#xff08;RandomResizedCrop&#xff0…...

基于Kitti数据集的智能驾驶目标检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要&#xff1a;基于Kitti数据集的智能驾驶目标检测系统可用于日常生活中检测与定位行人&#xff08;Pedestrian&#xff09;、面包车&#xff08;Van&#xff09;、坐着的人&#xff08;Person Sitting&#xff09;、汽车&#xff08;Car&#xff09;、卡车&#xff08;Truck…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链&#xff08;Filter Chain&#xff09;&#xff0c;核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤&#xff1a; 用户提交登录请求拦…...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...

【笔记】AI Agent 项目 SUNA 部署 之 Docker 构建记录

#工作记录 构建过程记录 Microsoft Windows [Version 10.0.27871.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗ ██╗███╗ ██╗ █████╗ ██╔════╝…...