数学建模学习(4):TOPSIS 综合评价模型及编程实战
一、数据总览
需求:我们需要对各个银行进行评价,A-G为银行的各个指标,下面是银行的数据:

二、代码逐行实现
清空代码和变量的指令
clear;clc;
层次分析法
每一行代表一个对象的指标评分
p = [8,7,6,8;7,8,8,7];%每一行代表一个对象的指标评分
A为自己构造的输入判别矩阵
%A为自己构造的输入判别矩阵
A=[1,3,1,1/3;1/3,1,1/2,1/5;1,2,1,1/3;3,5,3,1];
求特征值特征向量,找到最大特征值对应的特征向量
%%
[n,m]=size(A);
%求特征值特征向量,找到最大特征值对应的特征向量
[V,D]=eig(A); %求特征值和特征向量 D记录特征值 V代表特征向量
%%
找到最大的特征值
tzz=max(max(D)); %找到最大的特征值
找到最大的特征值位置
c1=find(max(D)==tzz);%找到最大的特征值位置
最大特征值对应的特征向量
tzx=V(:,c1);%最大特征值对应的特征向量
计算权重
quan1 = tzx/sum(tzx);
%%
%赋权重
quan=zeros(n,1);
for i=1:nquan(i,1)=tzx(i,1)/sum(tzx);
end
一致性检验
Q=quan;
%一致性检验
CI=(tzz-n)/(n-1);
RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
%判断是否通过一致性检验
CR=CI/RI(1,n);
if CR>=0.1fprintf('没有通过一致性检验\n');
elsefprintf('通过一致性检验\n');
end
显示出所有评分对象的评分值
%显示出所有评分对象的评分值score=P*Q;for i=1:length(score)name=['object_score',num2str(i)];eval([name,'=score(i)'])end
Topsis层次分析法
待评价的数据
data=[220 6 30 10 10 5
190 8 25 9 8 3
180 8 28 7 7 4
170 7 23 8 7 2];
负向指标准化处理
%负向指标准化处理index=3;for i=1:length(index)data1(:,index(i))=(max(data(:,index(i)))-data(:,index(i)))/(max(data(:,index(i)))-min(data(:,index(i))));
end
正向指标的标准化处理
%%
%%正向指标准化处理
index_all=1:size(data1,2);
index_all(index)=[]; % 除负向指标外其余所有指标
index=index_all;
%%
for i=1:length(index)data1(:,index(i))=(data(:,index(i))-min(data(:,index(i))))/(max(data(:,index(i)))-min(data(:,index(i))));
end
标准化处理
%%标准化处理data1=zscore(data);
% for j=1:size(data1,2)
% data1(:,j)= data(:,j)./sqrt(sum(data(:,j).^2));
% end
得到加权后的数据
%得到加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]; %使用求权重的方法求得
R=data1.*w;
得到最大值和最小值距离
%得到最大值和最小值距离
r_max=max(R); %每个指标的最大值
r_min=min(R); %每个指标的最小值
d_z = sqrt(sum([(R -repmat(r_max,size(R,1),1)).^2 ],2)) ; %d+向量
d_f = sqrt(sum([(R -repmat(r_min,size(R,1),1)).^2 ],2)); %d-向量
%sum(data,2)对行求和 ,sum(data)默认对列求和
得到得分
%得到得分
s=d_f./(d_z+d_f );
Score=100*s/max(s);
for i=1:length(Score)fprintf('第%d个投标者百分制评分为:%d\n',i,Score(i));
end
三、代码整体实现
下面是matlab实现层次分析法和Topsis综合评价法的代码:
%% 层次分析法
clear;clc;
P=[8,7,6,8;7,8,8,7];%每一行代表一个对象的指标评分
%%
%A为自己构造的输入判别矩阵
A=[1,3,1,1/3;1/3,1,1/2,1/5;1,2,1,1/3;3,5,3,1];
%%
[n,m]=size(A);
%求特征值特征向量,找到最大特征值对应的特征向量
[V,D]=eig(A); %求特征值和特征向量 D记录特征值 V代表特征向量
%%
tzz=max(max(D)); %找到最大的特征值
%%
c1=find(max(D)==tzz);%找到最大的特征值位置
%%
tzx=V(:,c1);%最大特征值对应的特征向量
%%
quan1 = tzx/sum(tzx);
%%
%赋权重
quan=zeros(n,1);
for i=1:nquan(i,1)=tzx(i,1)/sum(tzx);
end
%%
%%%
Q=quan;
%一致性检验
CI=(tzz-n)/(n-1);
RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
%判断是否通过一致性检验
CR=CI/RI(1,n);
if CR>=0.1fprintf('没有通过一致性检验\n');
elsefprintf('通过一致性检验\n');
end
%%
%显示出所有评分对象的评分值score=P*Q;for i=1:length(score)name=['object_score',num2str(i)];eval([name,'=score(i)'])end%% TOPSISclc;clear;%%
data=[220 6 30 10 10 5
190 8 25 9 8 3
180 8 28 7 7 4
170 7 23 8 7 2];
%%index=3;for i=1:length(index)data1(:,index(i))=(max(data(:,index(i)))-data(:,index(i)))/(max(data(:,index(i)))-min(data(:,index(i))));
end
%%
%%正向指标准化处理
index_all=1:size(data1,2);
index_all(index)=[]; % 除负向指标外其余所有指标
index=index_all;
for i=1:length(index)data1(:,index(i))=(data(:,index(i))-min(data(:,index(i))))/(max(data(:,index(i)))-min(data(:,index(i))));
enddata1=zscore(data);
% for j=1:size(data1,2)
% data1(:,j)= data(:,j)./sqrt(sum(data(:,j).^2));
% end%得到加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]; %使用求权重的方法求得
R=data1.*w;%得到最大值和最小值距离
r_max=max(R); %每个指标的最大值
r_min=min(R); %每个指标的最小值
d_z = sqrt(sum([(R -repmat(r_max,size(R,1),1)).^2 ],2)) ; %d+向量
d_f = sqrt(sum([(R -repmat(r_min,size(R,1),1)).^2 ],2)); %d-向量
%sum(data,2)对行求和 ,sum(data)默认对列求和
%得到得分
s=d_f./(d_z+d_f );
Score=100*s/max(s);
for i=1:length(Score)fprintf('第%d个投标者百分制评分为:%d\n',i,Score(i));
end
对应的原理公式,请跳转到下面的链接:
http://t.csdn.cn/HXaGB
相关文章:
数学建模学习(4):TOPSIS 综合评价模型及编程实战
一、数据总览 需求:我们需要对各个银行进行评价,A-G为银行的各个指标,下面是银行的数据: 二、代码逐行实现 清空代码和变量的指令 clear;clc; 层次分析法 每一行代表一个对象的指标评分 p [8,7,6,8;7,8,8,7];%每一行代表一个…...
PHP之Smarty使用以及框架display和assign原理
一、Smarty的下载 进入Smarty官网下载,复制目录libs目录即可http://www.smarty.net/http://www.smarty.net/ 二、使用Smarty,创建目录demo,把libs放进去改名为Smarty 三、引入Smarty配置,创建目录,index.php文件配置 <?php…...
《TCP IP网络编程》第十一章
第 11 章 进程间通信 11.1 进程间通信的基本概念 通过管道实现进程间通信: 进程间通信,意味着两个不同的进程中可以交换数据。下图是基于管道(PIPE)的进程间通信的模型: 可以看出,为了完成进程间通信&…...
Folx Pro 5 最好用的Mac磁力链接BT种子下载工具
除了迅雷,还有哪个支持磁力链接下载?Mac电脑如何下载磁力链接?经常有小伙伴问老宅。今天,老宅给大家推荐Folx Pro For Mac,Mac系统超好用的磁力下载工具。 Folx是一款功能强大且易于使用的Mac下载管理器,并…...
Redis 数据库的高可用
文章目录 Redis 数据库的高可用一.Redis 数据库的持久化1.Redis 高可用概念2.Redis 实现高可用的技术2.1 持久化2.2 主从复制2.3 哨兵2.4 Cluster集群 3.Redis 持久化3.1 持久化的功能3.2 Redis 提供持久化的方式3.2.1 RDB 持久化3.2.2 AOF 持久化(append only file…...
elementPlus dialog组件设置可拖动,当内容高度大于视口高度拖动显示异常的解决办法
elementPlus UI的dialog弹框组件在设置了draggable属性后就可拖动弹框,但是当弹框的内容高度大于视口高度时去拖动弹框就会出现显示问题。 解决办法(修改源码) 去node_modules下面找到element-plus文件夹,按照以下路径修改onMou…...
亲测解决Git inflate: data stream error (incorrect data check)
Git inflate: data stream error (incorrect data check) error: unable to unpack… 前提是你的repository在github等服务器或者其他路径有过历史备份/副本,不要求是最新版本的,只要有就可能恢复你做的所有工作。 执行git fsck --full检查损坏的文件 在…...
Ansible 自动化运维工具
Ansible 简介 Ansible 自动化运维工具(机器管理工具)可以实现批量管理多台(成百上千)主机,应用级别的跨主机编排工具。现在也在自动化管理领域大放异彩。它融合了众多老牌运维工具的优点,Pubbet和Saltstac…...
node.js 爬虫图片下载
主程序文件 app.js 运行主程序前需要先安装使用到的模块: npm install superagent --save axios要安装指定版,安装最新版会报错:npm install axios0.19.2 --save const {default: axios} require(axios); const fs require(fs); const superagent r…...
VAE-根据李宏毅视频总结的最通俗理解
1.VAE的直观理解 先简单了解一下自编码器,也就是常说的Auto-Encoder。Auto-Encoder包括一个编码器(Encoder)和一个解码器(Decoder)。其结构如下: 自编码器是一种先把输入数据压缩为某种编码, 后仅通过该编…...
【LangChain】检索器之上下文压缩
LangChain学习文档 【LangChain】检索器(Retrievers)【LangChain】检索器之MultiQueryRetriever【LangChain】检索器之上下文压缩 上下文压缩 LangChain学习文档 概要内容使用普通向量存储检索器使用 LLMChainExtractor 添加上下文压缩(Adding contextual compression with an…...
uniapp 语音文本播报功能
最近uniapp项目上遇到一个需求 就是在接口调用成功的时候加上语音播报 , ‘创建成功’ ‘开始成功’ ‘结束成功’ 之类的。 因为是固定的文本 ,所以我先利用工具生成了 文本语音mp3文件,放入项目中,直接用就好了。 这里用到的工…...
腾讯云高IO型云服务器CPU型号处理器主频性能
腾讯云服务器高IO型CVM实例CPU处理器主频性能说明,高IO型云服务器具有高随机IOPS、高吞吐量、低访问延时等特点,适合对硬盘读写和时延要求高的高性能数据库等I/O密集型应用,腾讯云服务器网分享高IO型云服务器IT5和IT3的CPU处理器说明…...
【数据结构】实验八:树
实验八 树 一、实验目的与要求 1)理解树的定义; 2)掌握树的存储方式及基于存储结构的基本操作实现; 二、 实验内容 题目一:采用树的双亲表示法根据输入实现以下树的存储,并实现输入给定结点的双亲结点…...
kafka消费者api和分区分配和offset消费
kafka消费者 消费者的消费方式为主动从broker拉取消息,由于消费者的消费速度不同,由broker决定消息发送速度难以适应所有消费者的能力 拉取数据的问题在于,消费者可能会获得空数据 消费者组工作流程 Consumer Group(CG&#x…...
【驱动开发day4作业】
头文件代码 #ifndef __HEAD_H__ #define __HEAD_H__ typedef struct{unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int ODR; }gpio_t; #define PHY_LED1_ADDR 0X50006000 #define PHY_LED2_ADDR 0X50007000 #…...
Ubuntu 20.04 Ubuntu18.04安装录屏软件Kazam
1.在Ubuntu Software里面输入Kazam,就可以找不到这个软件,直接点击install就可以了 2.使用方法: 选择Screencast(录屏) Fullscreen(全屏)-----Windows(窗口)--------Ar…...
ADC 的初识
ADC介绍 Q: ADC是什么? A: 全称:Analog-to-Digital Converter,指模拟/数字转换器 ADC的性能指标 量程:能测量的电压范围分辨率:ADC能辨别的最小模拟量,通常以输出二进制数的位数表示,比如&am…...
MMdetection框架速成系列 第07部分:数据增强的N种方法
MMdetection框架实现数据增强的N种方法 1 为什么要进行数据增强2 数据增强的常见误区3 常见的六种数据增强方式3.1 随机翻转(RandomFlip)3.2 随机裁剪(RandomCrop)3.3 随机比例裁剪并缩放(RandomResizedCrop࿰…...
基于Kitti数据集的智能驾驶目标检测系统(PyTorch+Pyside6+YOLOv5模型)
摘要:基于Kitti数据集的智能驾驶目标检测系统可用于日常生活中检测与定位行人(Pedestrian)、面包车(Van)、坐着的人(Person Sitting)、汽车(Car)、卡车(Truck…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
