当前位置: 首页 > news >正文

2D坐标系下的点的转换矩阵(平移、缩放、旋转、错切)

文章目录

        • 1. 平移 (Translation)
        • 2. 缩放 (Scaling)
        • 3. 旋转 (Rotation)
        • 4. 错切 (Shearing)
        • 5. 镜像 (Reflection)

1. 平移 (Translation)

在2D空间中,我们经常需要将一个点平移到另一个位置。假设空间中的一点 P ( x , y ) P(x,y) P(x,y);将其向 x , y x, y x,y方向分别平移 t x t_x tx t y t_y ty, 假设平移后点的坐标为 ( x ′ , y ′ ) (x',y') (x,y),则上述点的平移操作可以归纳为如下公式:
x ′ = x + t x y ′ = x + t y \begin{alignat}{2} &x'=x + t_x\\ &y'=x + t_y \end{alignat} x=x+txy=x+ty
使用齐次矩阵表示如下:
[ x ′ y ′ 1 ] = [ 1 b t x 0 1 t y 0 0 1 ] [ x y 1 ] \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & b & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} xy1 = 100b10txty1 xy1

import numpy as npdef translation():"""原始数组a 三个点(1,1) (4,4) (7,7)构建齐次矩阵 P构建变换矩阵 T"""a = np.array([[1, 1],[4, 4],[7, 7]])P = np.array([a[:, 0],a[:, 1],np.ones(len(a))])T = np.array([[1, 0, 2],[0, 1, 2],[0, 0, 1]])return np.dot(T, P)print(translation())"""
[[3. 6. 9.][3. 6. 9.][1. 1. 1.]]
"""

动画效果演示

import matplotlib
import matplotlib.pyplot as plt
import numpy as npX, Y = np.mgrid[0:1:5j, 0:1:5j]
x, y = X.ravel(), Y.ravel()def trans_translate(x, y, tx, ty):T = [[1, 0, tx],[0, 1, ty],[0, 0, 1]]T = np.array(T)P = np.array([x, y, [1] * x.size])return np.dot(T, P)fig, ax = plt.subplots(1, 4)
T_ = [[0, 0], [2.3, 0], [0, 1.7], [2, 2]]
for i in range(4):tx, ty = T_[i]x_, y_, _ = trans_translate(x, y, tx, ty)ax[i].scatter(x_, y_)ax[i].set_title(r'$t_x={0:.2f}$ , $t_y={1:.2f}$'.format(tx, ty))ax[i].set_xlim([-0.5, 4])ax[i].set_ylim([-0.5, 4])ax[i].grid(alpha=0.5)ax[i].axhline(y=0, color='k')ax[i].axvline(x=0, color='k')
plt.show()

请添加图片描述

2. 缩放 (Scaling)

在2D空间中,点 ( x , y ) (x,y) (x,y)相对于另一点 ( p x , p y ) (p_x,p_y) (px,py)进行缩放操作,我们不妨缩放因子在 x , y x,y xy方向分别为: s x , s y s_x, s_y sx,sy, 则上述的缩放操作可以归纳为如下公式:
x ′ = s x ( x − p x ) + p x = s x x + p x ( 1 − s x ) y ′ = s y ( y − p y ) + p y = s y y + p y ( 1 − s y ) \begin{alignat}{2} &x'=s_x(x-p_x) + p_x &=s_xx + p_x(1-s_x)\\ &y'=s_y(y-p_y) + p_y &=s_yy + p_y(1-s_y) \end{alignat} x=sx(xpx)+pxy=sy(ypy)+py=sxx+px(1sx)=syy+py(1sy)
使用齐次矩阵表示如下:
[ x ′ y ′ 1 ] = [ s x 0 p x ( 1 − s x ) 0 s y p y ( 1 − s y ) 0 0 1 ] [ x y 1 ] \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x& 0 & p_x(1-s_x) \\ 0 & s_y& p_y(1-s_y)\\ 0 & 0& 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} xy1 = sx000sy0px(1sx)py(1sy)1 xy1

def trans_scale(x, y, px, py, sx, sy):T = [[sx, 0 , px*(1 - sx)],[0 , sy, py*(1 - sy)],[0 , 0 , 1          ]]T = np.array(T)P = np.array([x, y, [1]*x.size])return np.dot(T, P)fig, ax = plt.subplots(1, 4)
S_ = [[1, 1], [1.8, 1], [1, 1.7], [2, 2]]
P_ = [[0, 0], [0, 0], [0.45, 0.45], [1.1, 1.1]]
for i in range(4):sx, sy = S_[i]; px, py = P_[i]x_, y_, _ = trans_scale(x, y, px, py, sx, sy)ax[i].scatter(x_, y_)ax[i].scatter(px, py)ax[i].set_title(r'$p_x={0:.2f}$ , $p_y={1:.2f}$'.format(px, py) + '\n'r'$s_x={0:.2f}$ , $s_y={1:.2f}$'.format(sx, sy))ax[i].set_xlim([-2, 2])ax[i].set_ylim([-2, 2])ax[i].grid(alpha=0.5)ax[i].axhline(y=0, color='k')ax[i].axvline(x=0, color='k')plt.show()

请添加图片描述

3. 旋转 (Rotation)

在2D空间中,对点 ( x , y ) (x,y) (x,y)相对于另一点 ( p x , p y ) (p_x,p_y) (px,py)进行旋转操作,一般来说逆时针为正,顺时针为负,假设旋转角度为 β \beta β, 则上述点 x , y x,y x,y 相对于点 p x , p y p_x,p_y px,py的旋转角度 β \beta β 的操作使用齐次矩阵表示如下:
[ x ′ y ′ 1 ] = [ cos ⁡ β − sin ⁡ β p x ( 1 − cos ⁡ β ) + p y sin ⁡ β sin ⁡ β cos ⁡ β p y ( 1 − cos ⁡ β ) + p x sin ⁡ β 0 0 1 ] [ x y 1 ] \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \beta& -\sin \beta & p_x(1-\cos \beta) + p_y \sin \beta \\ \sin \beta & \cos \beta& p_y(1-\cos \beta) + p_x \sin \beta \\ 0 & 0& 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} xy1 = cosβsinβ0sinβcosβ0px(1cosβ)+pysinβpy(1cosβ)+pxsinβ1 xy1

def trans_rotate(x, y, px, py, beta):beta = np.deg2rad(beta)T = [[np.cos(beta), -np.sin(beta), px*(1 - np.cos(beta)) + py*np.sin(beta)],[np.sin(beta),  np.cos(beta), py*(1 - np.cos(beta)) - px*np.sin(beta)],[0           ,  0           , 1                                      ]]T = np.array(T)P = np.array([x, y, [1]*x.size])return np.dot(T, P)fig, ax = plt.subplots(1, 4)R_ = [0, 225, 40, -10]
P_ = [[0, 0], [0, 0], [0.5, -0.5], [1.1, 1.1]]for i in range(4):beta = R_[i]; px, py = P_[i]x_, y_, _ = trans_rotate(x, y, px, py, beta)ax[i].scatter(x_, y_)ax[i].scatter(px, py)ax[i].set_title(r'$\beta={0}°$ , $p_x={1:.2f}$ , $p_y={2:.2f}$'.format(beta, px, py))ax[i].set_xlim([-2, 2])ax[i].set_ylim([-2, 2])ax[i].grid(alpha=0.5)ax[i].axhline(y=0, color='k')ax[i].axvline(x=0, color='k')plt.show()

请添加图片描述

4. 错切 (Shearing)

在2D空间中,对点 ( x , y ) (x,y) (x,y) 相对于另一点 ( p x , p y ) (p_x,p_y) (px,py)进行错切操作,错切一般用于弹性物体的变形处理。 假设沿x 方向与y方向错切参数分别为 λ x , λ y \lambda _x,\lambda _y λxλy, 则的错切操作可以归纳使用齐次矩阵表示如下:

[ x ′ y ′ 1 ] = [ 1 λ x − λ x p x λ y 1 − λ y p y 0 0 1 ] [ x y 1 ] \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1& \lambda _x & -\lambda _x p_x \\ \lambda _y & 1& -\lambda _y p_y \\ 0 & 0& 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} xy1 = 1λy0λx10λxpxλypy1 xy1

import matplotlib.pyplot as plt
import numpy as npX, Y = np.mgrid[0:1:5j, 0:1:5j]
x, y = X.ravel(), Y.ravel()def trans_shear(x, y, px, py, lambdax, lambday):T = [[1      , lambdax, -lambdax*px],[lambday, 1      , -lambday*py],[0      , 0      ,  1         ]]T = np.array(T)P = np.array([x, y, [1]*x.size])return np.dot(T, P)fig, ax = plt.subplots(1, 4)L_ = [[0, 0], [2, 0], [0, -2], [-2, -2]]
P_ = [[0, 0], [0, 0], [0, 1.5], [1.1, 1.1]]for i in range(4):lambdax, lambday = L_[i]; px, py = P_[i]x_, y_, _ = trans_shear(x, y, px, py, lambdax, lambday)ax[i].scatter(x_, y_)ax[i].scatter(px, py)ax[i].set_title(r'$p_x={0:.2f}$ , $p_y={1:.2f}$'.format(px, py) + '\n'r'$\lambda_x={0:.2f}$ , $\lambda_y={1:.2f}$'.format(lambdax, lambday))ax[i].set_xlim([-3, 3])ax[i].set_ylim([-3, 3])ax[i].grid(alpha=0.5)ax[i].axhline(y=0, color='k')ax[i].axvline(x=0, color='k')plt.show()

在这里插入图片描述

5. 镜像 (Reflection)

对于镜像,对称轴的法向量 v ( v x , v y ) v(v_x,v_y) v(vx,vy), 镜像矩阵 T m T_{m} Tm表示为:
[ 1 − 2 x v 2 − 2 x v y v 0 − 2 x v y v 1 − 2 y v 2 0 0 0 1 ] \left[ \begin{array}{ccc} 1-2 x_{v}{ }^{2} & -2 x_{v} y_{v} & 0 \\ -2 x_{v} y_{v} & 1-2 y_{v}{ }^{2} & 0 \\ 0 & 0 & 1 \end{array} \right] 12xv22xvyv02xvyv12yv20001
另外就是需要一个表示对称轴位置的点(对称轴2点中任意一点),表示为 M ( x m , y m ) M\left(x_{\mathrm{m}}, y_{m}\right) M(xm,ym),变换矩阵 H = T t ∗ T m ∗ T t − 1 H = T_{t}*T_{m}*T_{t}^{-1} H=TtTmTt1,即:
H = [ 1 0 0 0 1 0 x m y m 1 ] [ 1 − 2 x v 2 − 2 x v y v 0 − 2 x v y v 1 − 2 y v 2 0 0 0 1 ] [ 1 0 0 0 1 0 − x m − y m 1 ] H = \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x_{\mathrm{m}} & y_{m} & 1 \end{array} \right] \left[ \begin{array}{ccc} 1-2 x_{v}{ }^{2} & -2 x_{v} y_{v} & 0 \\ -2 x_{v} y_{v} & 1-2 y_{v}{ }^{2} & 0 \\ 0 & 0 & 1 \end{array} \right] \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -x_{\mathrm{m}} & -y_{m} & 1 \end{array} \right] H= 10xm01ym001 12xv22xvyv02xvyv12yv20001 10xm01ym001
镜像后的坐标即为 T o ∗ T t ∗ T m ∗ T t − 1 T_{o}*T_{t}*T_{m}*T_{t}^{-1} ToTtTmTt1

沿 X 轴 镜像的镜像矩阵:
[ 1 0 0 0 − 1 0 1 0 1 ] \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{array} \right] 101010001
沿 Y 轴 镜像的镜像矩阵:
[ − 1 0 0 0 1 0 0 1 1 ] \left[ \begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right] 100011001

import numpy as npa = np.array([[1, 2],[2, 2],[3, 5],[4, 6]])
a = np.array([a[:,0], a[:,1], np.ones(len(a))])
print("\n",a)
print("--------------------------------")T_x = np.array( [[ 1,  0,  0],[ 0, -1,  0],[ 1,  0,  1]])
print("\n",np.dot(T_x, a))
print("=================================")
T_y = np.array( [[-1,  0,  0],[ 0,  1,  0],[ 0,  1,  1]])
print("\n",np.dot(T_y, a))

参考:
https://zhuanlan.zhihu.com/p/387578291
https://zhuanlan.zhihu.com/p/187411029
https://blog.csdn.net/Akiyama_sou/article/details/122144415

相关文章:

2D坐标系下的点的转换矩阵(平移、缩放、旋转、错切)

文章目录 1. 平移 (Translation)2. 缩放 (Scaling)3. 旋转 (Rotation)4. 错切 (Shearing)5. 镜像 (Reflection) 1. 平移 (Translation&#xff09…...

【Rabbitmq】报错:ERROR CachingConnectionFactory Channel shutdown: channel error;

报错内容 ERROR CachingConnectionFactory Channel shutdown: channel error; protocol method: #method<channel.close>(reply-code406, reply-textPRECONDITION_FAILED - unknown delivery tag 1, class-id60, method-id80) 原因 默认是自动ack&#xff0c;然后你代码…...

el-table组件的el-table-column电脑端使用fixed属性固定,移动端不使用固定,怎么实现?

要在电脑端使用 fixed 固定列&#xff0c;而在移动端不使用&#xff0c;可以使用 CSS 媒体查询结合 Vue 的动态绑定来实现。以下是一个示例代码&#xff1a; <template><el-table><el-table-columnprop"name"label"Name":fixed"isDesk…...

RocketMQ 行业分享

5.0的架构发生了重大调整&#xff0c;添加了一层rocketmq-proxy,可以通过grpc的方式接入。 参考 https://juejin.cn/post/7199413150973984827...

物联网场景中的边缘计算解决方案有哪些?

在物联网场景中&#xff0c;边缘计算是一种重要的解决方案&#xff0c;用于在物联网设备和云端之间进行实时数据处理、分析和决策。HiWoo Box作为工业边缘网关设备&#xff0c;具备边缘计算能力&#xff0c;包括单点公式计算、Python脚本编程以及规则引擎&#xff0c;它为物联网…...

【C++ 进阶】学习导论:C/C++ 进阶学习路线、大纲与目标

目录 一、C 学习路线 二、C 课程大纲与学习目标 &#xff08;1&#xff09;第一阶段&#xff1a;C 语言基础 &#xff08;2&#xff09;第二阶段&#xff1a;C 高级编程 &#xff08;3&#xff09;第三阶段&#xff1a;C 核心编程与桌面应用开发 &#xff08;4&#xf…...

【数据结构】实验七:字符串

实验七 字符串实验报告 一、实验目的与要求 1&#xff09;巩固对串的理解&#xff1b; 2&#xff09;掌握串的基本操作实现&#xff1b; 3&#xff09;掌握 BF 和 KMP 算法思想。 二、实验内容 1. 给定一个字符串ababcabcdabcde和一个子串abcd,查找字串是否在主串中出现。…...

排序算法、

描述 由小到大输出成一行&#xff0c;每个数字后面跟一个空格。 输入 三个整数 输出 输入三个整数&#xff0c;按由小到大的顺序输出。 输入样例 1 2 3 1 输出样例 1 1 2 3 输入样例 2 4 5 2 输出样例 2 2 4 5 代码一&#xff08;如下&#xff09;&#xff1…...

rbd快照管理、rbd快照克隆原理与实现、rbd镜像开机自动挂载、ceph文件系统、对象存储、配置对象存储客户端、访问Dashboard

day04 day04快照快照克隆开机自动挂载ceph文件系统使用MDS对象存储配置服务器端配置客户端访问Dashborad 快照 快照可以保存某一时间点时的状态数据快照是映像在特定时间点的只读逻辑副本希望回到以前的一个状态&#xff0c;可以恢复快照使用镜像、快照综合示例 # 1. 在rbd存…...

vue、vuex、vue-router初学导航配合elementui及vscode快捷键

目录 一、vue资源 1.vue知识库汇总 2.vuejs组件 3.Vue.js 组件编码规范 目标 #目录 #基于模块开发...

Elasticsearch:使用 ELSER 释放语义搜索的力量:Elastic Learned Sparse EncoderR

问题陈述 在信息过载的时代&#xff0c;根据上下文含义和用户意图而不是精确的关键字匹配来查找相关搜索结果已成为一项重大挑战。 传统的搜索引擎通常无法理解用户查询的语义上下文&#xff0c;从而导致相关性较低的结果。 解决方案&#xff1a;ELSER Elastic 通过其检索模型…...

MySQL数据库分库分表备份(shell脚本)

创建目录 mkdir /server/scripts 一、使用脚本实现分库备份 1、创建脚本并编写 [rootlocalhost scripts]# vim bak_db_v1.sh #!/bin/bash ######################################### # File Name:bak_db_v1.sh # Version: V1.0 # Author:Shen QL # Email:17702390000163.co…...

建造者设计模式go实现尝试

文章目录 前言代码结果总结 前言 本文章尝试使用go实现“建造者”。 代码 package mainimport ("fmt" )// 产品1。可以有不同的毫无相关的产品&#xff0c;这里只举一个 type Product1 struct {parts []string }// 产品1逻辑。打印组成产品的部分 func (p *Product…...

创建交互式用户体验:探索JavaScript中的Prompt功能

使用JavaScript中的Prompt功能&#xff1a;创建交互式用户体验 在前端开发中&#xff0c;JavaScript的prompt()函数是一个强大而有用的工具&#xff0c;它可以创建交互式的用户体验。无论是接收用户输入、进行简单的验证还是实现高级的交互功能&#xff0c;prompt()函数都能胜…...

自然语言处理从入门到应用——LangChain:提示(Prompts)-[提示模板:基础知识]

分类目录&#xff1a;《自然语言处理从入门到应用》总目录 语言模型以文本作为输入&#xff0c;这段文本通常被称为提示&#xff08;Prompt&#xff09;。通常情况下&#xff0c;这不仅仅是一个硬编码的字符串&#xff0c;而是模板、示例和用户输入的组合。LangChain提供了多个…...

OpenPCDet调试出现的问题

Open3d遇到的问题&#xff0c;解决方案 1.ModuleNotFoundError: No module named ‘pcdet’ 原因&#xff1a;没有编译安装pcdet。 解决&#xff1a;进入openpcdet项目根目录&#xff0c;修改setup.py权限&#xff0c;并编译&#xff1a; sudo chmod 777 setup.py python set…...

【业务功能篇58】Springboot + Spring Security 权限管理 【下篇】

4.2.2.3 SpringSecurity工作流程分析 SpringSecurity的原理其实就是一个过滤器链&#xff0c;内部包含了提供各种功能的过滤器。这里我们可以看看入门案例中的过滤器。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KjoRRost-1690534711077)(http…...

VBA技术资料MF34:检查Excel自动筛选是否打开

【分享成果&#xff0c;随喜正能量】聪明人&#xff0c;抬人不抬杠&#xff1b;傻子&#xff0c;抬杠不抬人。聪明人&#xff0c;把别人抬得很高&#xff0c;别人高兴、舒服了&#xff0c;看你顺眼了&#xff0c;自然就愿意帮你&#xff01;而傻人呢&#xff1f;不分青红皂白&a…...

spring扩展点

在Spring框架中&#xff0c;有多个扩展点&#xff08;Extension Point&#xff09;可用于自定义和扩展应用程序的行为。这些扩展点允许开发人员介入Spring的生命周期和行为&#xff0c;并提供了灵活性和可定制性。以下是一些常见的Spring扩展点&#xff1a; BeanPostProcessor&…...

Skin Shader 使用自动生成的Thickness

Unity2023.2的版本&#xff0c;Thickness 自动化生成&#xff0c;今天测试了一把&#xff0c;确实不错。 1.Render 设置 在Project Settings->Graphics->HDRP Global Settings中 Frame Setting->Rendering->Compute Thickness 打开 2.Layer设置 2.1添加Layer&…...

Docker中的网络

文章目录 网络网桥&#xff08;bridge&#xff09;创建网桥接口hostnonecontaineroverlayoverlay底层原理 网络 网桥&#xff08;bridge&#xff09; 在Docker中&#xff0c;网桥&#xff08;Bridge&#xff09;是一种网络驱动&#xff0c;用于实现Docker容器之间和容器与宿主…...

SRS开源代码框架,协程库state-threads的使用

本章内容解读SRS开源代码框架&#xff0c;无二次开发&#xff0c;以学习交流为目的。 SRS是国人开发的流媒体服务器&#xff0c;C语言开发&#xff0c;本章使用版本&#xff1a;https://github.com/ossrs/srs/tree/5.0release。 目录 SRS协程库ST的使用源码ST协程库测试SrsAut…...

【QT 网络云盘客户端】——登录界面功能的实现

目录 1.注册账号 2.服务器ip地址和端口号设置 3. 登录功能 4.读取配置文件 5.显示主界面 1.注册账号 1.点击注册页面&#xff0c;将数据 输入 到 用户名&#xff0c;昵称&#xff0c;密码&#xff0c;确认密码&#xff0c;手机&#xff0c;邮箱 的输入框中&#xff0c; 点…...

【复盘与分享】第十一届泰迪杯B题:产品订单的数据分析与需求预测

文章目录 题目第一问第二问2.1 数据预处理2.2 数据集分析2.2.1 训练集2.2.2 预测集 2.3 特征工程2.4 模型建立2.4.1 模型框架和评价指标2.4.2 模型建立2.4.3 误差分析和特征筛选2.4.4 新品模型 2.5 模型融合2.6 预测方法2.7 总结 结尾 距离比赛结束已经过去两个多月了。 整个过…...

X - Transformer

回顾 Transformer 的发展 Transformer 最初是作为机器翻译的序列到序列模型提出的&#xff0c;而后来的研究表明&#xff0c;基于 Transformer 的预训练模型&#xff08;PTM&#xff09; 在各项任务中都有最优的表现。因此&#xff0c;Transformer 已成为 NLP 领域的首选架构&…...

ubuntu下畅玩Seer(via wine)

第一步&#xff1a;安装wine 部分exe文件的运行需要32位的指令集架构&#xff0c;需要向Ubuntu系统中添加一个新的架构&#xff08;i386&#xff09;&#xff0c;以支持32位的软件包。因为在64位的Ubuntu系统中&#xff0c;默认情况下只能安装和运行64位的软件。 通过添加i386…...

第五章:Spring下

第五章&#xff1a;Spring下 5.1&#xff1a;AOP 场景模拟 创建一个新的模块&#xff0c;spring_proxy_10&#xff0c;并引入下面的jar包。 <packaging>jar</packaging><dependencies><dependency><groupId>junit</groupId><artifactI…...

在CSDN学Golang云原生(Kubernetes基础)

一&#xff0c;k8s集群安装和升级 安装 Golang K8s 集群可以参照以下步骤&#xff1a; 准备环境&#xff1a;需要一组 Linux 服务器&#xff0c;并在每台服务器上安装 Docker 和 Kubernetes 工具。初始化集群&#xff1a;使用 kubeadm 工具初始化一个 Kubernetes 集群。例如&…...

给APK签名—两种方式(flutter android 安装包)

前提&#xff1a;给未签名的apk签名&#xff0c;可以先检查下apk有没有签名 通过命令行查看&#xff1a;打开终端或命令行界面&#xff0c;导入包含APK文件的目录&#xff0c;并执行以下命令&#xff1a; keytool -printcert -jarfile your_app.apk 将 your_app.apk替换为要检查…...

观察者模式、中介者模式和发布订阅模式

观察者模式 定义 观察者模式定义了对象间的一种一对多的依赖关系&#xff0c;当一个对象的状态发生改变时&#xff0c;所有依赖于它的对象都将得到通知&#xff0c;并自动更新 观察者模式属于行为型模式&#xff0c;行为型模式关注的是对象之间的通讯&#xff0c;观察者模式…...