当前位置: 首页 > article >正文

SOC-ESP32S3部分:9-GPIO输入按键状态读取

飞书文档https://x509p6c8to.feishu.cn/wiki/L6IGwHKV6ikQ08kqwAwcAvhznBc

前面我们学习了GPIO的输出,GPIO输入部分其实也是一样的,这里我们使用按键作为GPIO输入例程讲解,分三步走。

  • 查看板卡原理图,确定使用的是哪个GPIO
  • 查看GPIO官方例程,了解GPIO输入如何配置
  • 查看GPIO官方API文档,了解API参数和如何使用

1.1、查看板卡原理图,确定使用的是哪个GPIO

这里我们使用按键作为GPIO输入例程讲解,先查看原理图,找到按键连接的GPIO,如下图所示,板卡的GPIO42连接到按键。

1.2、查看GPIO官方例程,了解GPIO如何配置

这部分和GPIO输出的配置比较类似,GPIO的输入配置和输出配置,用的都是一个函数gpio_config,我们只需要把参数中的mode设置为输入模式即可。

    gpio_config_t io_conf = {};io_conf.intr_type = GPIO_INTR_DISABLE;io_conf.pin_bit_mask = GPIO_INPUT_PIN_SEL;io_conf.mode = GPIO_MODE_INPUT;io_conf.pull_up_en = GPIO_PULLUP_ENABLE;gpio_config(&io_conf);

1.3、查看GPIO官方API文档,了解API参数和如何使用

GPIO输入主要用到两个函数,gpio_config和gpio_get_level,我们参考官方API手册了解下这两个函数的说明

头文件
#include "driver/gpio.h"esp_err_t gpio_config(const gpio_config_t *pGPIOConfig)
功能: gpio_config 函数用于配置一个或多个 GPIO 引脚。通过传递一个 gpio_config_t 结构体,可以设置引脚的模式、上拉/下拉电阻、中断类型等属性。pGPIOConfig参数说明
typedef struct {uint64_t pin_bit_mask;  // 要配置的 GPIO 引脚的位掩码gpio_mode_t mode;       // GPIO 引脚的工作模式gpio_pullup_t pull_up_en; // 是否启用上拉电阻gpio_pulldown_t pull_down_en; // 是否启用下拉电阻gpio_int_type_t intr_type; // 中断触发类型
} gpio_config_t;pin_bit_mask:
一个64位的掩码,用于指定要配置的引脚。每个位对应一个 GPIO 引脚,例如,若要配置 GPIO 2 和 GPIO 3,则可以设置为 (1ULL << 2) | (1ULL << 3)。mode: 引脚的工作模式,可以是以下值之一:
GPIO_MODE_DISABLE: 禁用引脚。
GPIO_MODE_INPUT: 输入模式。
GPIO_MODE_OUTPUT: 输出模式。
GPIO_MODE_OUTPUT_OD: 开漏输出模式。
GPIO_MODE_INPUT_OUTPUT_OD: 开漏输入输出模式。
GPIO_MODE_INPUT_OUTPUT: 输入输出模式。pull_up_en: 上拉电阻使能,可以是以下值之一:
GPIO_PULLUP_DISABLE: 禁用上拉电阻。
GPIO_PULLUP_ENABLE: 启用上拉电阻。pull_down_en: 下拉电阻使能,可以是以下值之一:
GPIO_PULLDOWN_DISABLE: 禁用下拉电阻。
GPIO_PULLDOWN_ENABLE: 启用下拉电阻。intr_type: 中断类型,可以是以下值之一:
GPIO_INTR_DISABLE: 禁用中断。
GPIO_INTR_POSEDGE: 上升沿触发中断。
GPIO_INTR_NEGEDGE: 下降沿触发中断。
GPIO_INTR_ANYEDGE: 任意边沿触发中断。
GPIO_INTR_LOW_LEVEL: 低电平触发中断。
GPIO_INTR_HIGH_LEVEL: 高电平触发中断。int gpio_get_level(gpio_num_t gpio_num);
功能: gpio_get_level 函数用于获取指定 GPIO 引脚的电平状态。该函数适用于配置为输入模式的 GPIO 引脚。
参数:
gpio_num: 要读取电平的 GPIO 引脚编号。
返回值:
0: 引脚处于低电平。
1: 引脚处于高电平。
-1: 参数无效(例如,GPIO 引脚编号无效或引脚未配置为输入模式)。

于是我们就可以得到最终的程序:

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "esp_log.h"static const char* TAG = "MyModule";
// 定义一个宏 GPIO_INPUT_IO,其值为 42,表示要使用的输入 GPIO 引脚编号为 42
#define GPIO_INPUT_IO 42
// 定义一个宏 GPIO_INPUT_PIN_SEL,通过位运算(将无符号长整型 1 左移 GPIO_INPUT_IO 位)生成一个用于选择特定 GPIO 引脚的掩码
#define GPIO_INPUT_PIN_SEL (1ULL << GPIO_INPUT_IO)void app_main(void)
{// 定义一个 gpio_config_t 类型的结构体变量 io_conf,并初始化为空结构体gpio_config_t io_conf = {};// 设置 GPIO 引脚的中断触发类型为上升沿触发io_conf.intr_type = GPIO_INTR_DISABLE;// 使用之前定义的掩码 GPIO_INPUT_PIN_SEL 来指定要配置的 GPIO 引脚io_conf.pin_bit_mask = GPIO_INPUT_PIN_SEL;// 将 GPIO 引脚的工作模式设置为输入模式io_conf.mode = GPIO_MODE_INPUT;// 启用 GPIO 引脚的上拉电阻io_conf.pull_up_en = GPIO_PULLUP_ENABLE;// 调用 gpio_config 函数,将上述配置应用到指定的 GPIO 引脚gpio_config(&io_conf);while (1){int level = gpio_get_level(GPIO_INPUT_IO);ESP_LOGI(TAG, "level: %d", level);vTaskDelay(1000 / portTICK_PERIOD_MS);}
}

代码优化

上面代码中,GPIO初始化部分代码还是太零散了,有没有办法更整洁点,也是有的,我们可以使用另一种结构体初始化的方式,定义+赋值放到一起。

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "esp_log.h"static const char* TAG = "MyModule";#define GPIO_INPUT_IO 42
#define GPIO_INPUT_PIN_SEL (1ULL << GPIO_INPUT_IO)void app_main(void)
{gpio_config_t io_conf = {.pin_bit_mask = GPIO_INPUT_PIN_SEL,.mode = GPIO_MODE_INPUT,.pull_up_en = GPIO_PULLUP_ENABLE,};gpio_config(&io_conf);while (1){int level = gpio_get_level(GPIO_INPUT_IO);ESP_LOGI(TAG, "level: %d", level);vTaskDelay(1000 / portTICK_PERIOD_MS);}
}

然后我们需要把板卡接到底板上,因为按键是在底板上的。

然后按下按键,可以看到打印level:0,松开按键打印level:1

相关文章:

SOC-ESP32S3部分:9-GPIO输入按键状态读取

飞书文档https://x509p6c8to.feishu.cn/wiki/L6IGwHKV6ikQ08kqwAwcAvhznBc 前面我们学习了GPIO的输出&#xff0c;GPIO输入部分其实也是一样的&#xff0c;这里我们使用按键作为GPIO输入例程讲解&#xff0c;分三步走。 查看板卡原理图&#xff0c;确定使用的是哪个GPIO查看G…...

前端(小程序)学习笔记(CLASS 2):WXML模板语法与WXSS模板样式

1、数据绑定 数据绑定的基本原则 1、在data中定义数据 在页面对应的.js文件中&#xff0c;把数据定义到data对象中即可&#xff1a; Page({data: {//字符串类型的数据info: init data,//数组类型的数据msgList: [{msg: hello}, {msg: world}]} }) 2、在WXML中使用数据(Mus…...

Ubuntu20.04的安装(VMware)

1.Ubuntu20.04.iso文件下载 下载网址&#xff1a;ubuntu-releases-20.04安装包下载_开源镜像站-阿里云 2.创建虚拟环境 2.1打开VMware与创建新虚拟机 点击创建新虚拟机 如果没下好可以点击稍后安装操作系统 选择linux版本选择Ubuntu 64位然后点击下一步。 注意这里需要选择一…...

【论文阅读】LLaVA-OneVision: Easy Visual Task Transfer

LLaVA-OneVision: Easy Visual Task Transfer 原文摘要 研究背景与目标 开发动机&#xff1a; 基于LLaVA-NeXT博客系列对数据、模型和视觉表征的探索&#xff0c;团队整合经验开发了开源大型多模态模型 LLaVA-OneVision。 核心目标&#xff1a; 突破现有开源LMM的局限&#xf…...

Spring Boot 项目多数据源配置【dynamic datasource】

前言&#xff1a; 随着互联网的发展&#xff0c;数据库的读写分离、数据迁移、多系统数据访问等多数据源的需求越来越多&#xff0c;我们在日常项目开发中&#xff0c;也不可避免的为了解决这个问题&#xff0c;本篇来分享一下在 Spring Boot 项目中使用多数据源访问不通的数据…...

JAVA查漏补缺(2)

AJAX 什么是Ajax Ajax&#xff08;Asynchronous Javascript And XML&#xff09;&#xff0c;即是异步的JavaScript和XML&#xff0c;Ajax其实就是浏览器与服务器之间的一种异步通信方式 异步的JavaScript 它可以异步地向服务器发送请求&#xff0c;在等待响应的过程中&…...

【Web前端】JavaScript入门与基础(二)

Javascript对象 什么是对象&#xff1f;对象&#xff08;object&#xff09;是 JavaScript 语言的核心概念&#xff0c;也是最重要的数据类型。简单说&#xff0c;对象就是一组“键值对”&#xff08;key-value&#xff09;的集合&#xff0c;是一种无序的复合数据集合。 var…...

取消 Conda 默认进入 Base 环境

在安装 Conda 后&#xff0c;每次打开终端时默认会进入 base 环境。可以通过以下方法取消这一默认设置。 方法一&#xff1a;使用命令行修改配置 在终端中输入以下命令&#xff0c;将 auto_activate_base 参数设置为 false&#xff1a; conda config --set auto_activate_ba…...

Electron+vite+vue3 从0到1搭建项目,开发Win、Mac客户端

随着前端技术的发展&#xff0c;出现了所谓的大前端。 大前端则是指基于前端技术延伸出来的各种终端平台及应用场景&#xff0c;包括APP、桌面端、手表终端、服务端等。 本篇文章主要是和大家一起学习一下使用Electron 如何打包出 Windows 和 Mac 所使用的客户端APP&#xff…...

《深度揭秘:解锁智能体大模型自我知识盲区探测》

当面对超出其训练数据边界和固有知识范畴的问题时&#xff0c;智能体大模型往往会陷入困境&#xff0c;却浑然不知&#xff0c;这便是知识盲区带来的隐患。如何构建能够自动发现自身知识盲区的智能体大模型&#xff0c;成为当下人工智能领域亟待攻克的前沿难题&#xff0c;它关…...

打卡Day33

简单的神经网络 数据的准备 # 仍然用4特征&#xff0c;3分类的鸢尾花数据集作为我们今天的数据集 from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import numpy as np# 加载鸢尾花数据集 iris load_iris() X iris.data # …...

计算机组成原理-基本运算部件定点数的运算

2.2基本运算部件 整理自up主beokayy_ 1.加法器 一位全加器 全加器是最基本的加法单元&#xff1a; 三个输入端&#xff1a;加数Ai,加数Bi,低位传进来的进位C1-1两个输出端&#xff1a;本位和S,向高位的进位C 全加器的逻辑表达式&#xff1a; SiAi⊕Bi⊕Ci-1CiAiBi(Ai⊕Bi)C…...

python打卡day34@浙大疏锦行

知识点回归&#xff1a; CPU性能的查看&#xff1a;看架构代际、核心数、线程数GPU性能的查看&#xff1a;看显存、看级别、看架构代际GPU训练的方法&#xff1a;数据和模型移动到GPU device上类的call方法&#xff1a;为什么定义前向传播时可以直接写作self.fc1(x) ①CPU性能查…...

SOC-ESP32S3部分:8-GPIO输出LED控制

飞书文档https://x509p6c8to.feishu.cn/wiki/OSQWwh95niobqUkKyDQcVgsbnFg 这节课&#xff0c;我们将会以ESP32S3外设GPIO的使用为例&#xff0c;带大家学习如何从零开始学会ESP32外设的使用。 例如&#xff0c;这节课我们的需求是&#xff0c;需要通过GPIO控制指示灯的亮灭&…...

05算法学习_59. 螺旋矩阵 II

05算法学习_59. 螺旋矩阵 II 05算法学习_59. 螺旋矩阵 II题目描述&#xff1a;个人代码&#xff1a;学习思路&#xff1a;第一种写法&#xff1a;题解关键点&#xff1a; 个人学习时疑惑点解答&#xff1a; 05算法学习_59. 螺旋矩阵 II 力扣题目链接: 59. 螺旋矩阵 II 题目描…...

绘制音频信号的各种频谱图,包括Mel频谱图、STFT频谱图等。它不仅能够绘制频谱图librosa.display.specshow

librosa.display.specshow 是一个非常方便的函数&#xff0c;用于绘制音频信号的各种频谱图&#xff0c;包括Mel频谱图、STFT频谱图等。它不仅能够绘制频谱图&#xff0c;还能自动设置轴标签和刻度&#xff0c;使得生成的图像更加直观和易于理解。 ### 函数签名 python libros…...

Linux `>`/`>>` 重定向操作符深度解析与高阶应用指南

Linux `>`/`>>` 重定向操作符深度解析与高阶应用指南 一、核心功能解析1. 基础重定向2. 标准流描述符二、高阶重定向技巧1. 多流重定向2. 文件描述符操作3. 特殊设备操作三、企业级应用场景1. 日志管理系统2. 数据管道处理3. 自动化运维四、安全与权限管理1. 防误操作…...

【自定义类型-联合和枚举】--联合体类型,联合体大小的计算,枚举类型,枚举类型的使用

目录 一.联合体类型 1.1--联合体类型的声明 1.2--联合体的特点 1.3--相同成员的结构体和联合体对比 1.4--联合体大小的计算 1.5--联合体练习 二.枚举类型 2.1--枚举类型的声明 2.2--枚举类型的优点 2.3--枚举类型的使用 &#x1f525;个人主页&#xff1a;草莓熊Lotso…...

李宏毅《深度学习》:Self-attention 自注意力机制

一&#xff0c;问题分析&#xff1a; 什么情况下需要使用self-attention架构&#xff0c;或者说什么问题是CNN等经典网络架构解决不了的问题&#xff0c;我们需要开发新的网络架构&#xff1f; 要解决什么问题《——》对应开发self-attention架构的目的&#xff1f; 1&#…...

C++初阶-list的使用1

目录 1.std::list简介 2.成员函数 2.1构造函数的使用 2.2list::operator的使用 3.迭代器 4.容量 4.1list::empty函数的使用 4.2list::size函数的使用 4.3list::max_size函数的使用 5.元素访问 6.修饰符 6.1list::assign函数的使用 6.2push_back和pop_back和push_fr…...

Linux中的tty与login之间的关系

agetty 进程和 login 进程之间的关系&#xff1a; 一、简要概括 agetty 是登录前的终端初始化程序。 login 是处理用户登录认证的程序。 关系&#xff1a;agetty 启动后等待用户输入用户名&#xff0c;然后调用 login 进程进行用户认证。 二、详细过程 1. agetty 的作用 a…...

Python web 开发 Flask HTTP 服务

Flask 是一个轻量级的 Web 应用框架&#xff0c;它基于 Python 编写&#xff0c;特别适合构建简单的 Web 应用和 RESTful API。Flask 的设计理念是提供尽可能少的约定和配置&#xff0c;从而让开发者能够灵活地构建自己的 Web 应用。 https://andi.cn/page/622189.html...

分享|16个含源码和数据集的计算机视觉实战项目

本文将分享16个含源码和数据集的计算机视觉实战项目。具体包括&#xff1a; 1. 人数统计工具 2. 颜色检测 3. 视频中的对象跟踪 4. 行人检测 5. 手势识别 6. 人类情感识别 7. 车道线检测 8. 名片扫描仪 9. 车牌识别 10. 手写数字识别 11.鸢尾花分类 12. 家庭照片人脸检测 13. 乐…...

二十三、面向对象底层逻辑-BeanDefinitionParser接口设计哲学

一、引言&#xff1a;Spring XML配置的可扩展性基石 在Spring框架的演进历程中&#xff0c;XML配置曾长期作为定义Bean的核心方式。虽然现代Spring应用更倾向于使用注解和Java Config&#xff0c;但在集成第三方组件、兼容遗留系统或实现复杂配置逻辑的场景下&#xff0c;XML配…...

[Vue]路由基础使用和路径传参

实际项目中不可能就一个页面&#xff0c;会有很多个页面。在Vue里面&#xff0c;页面与页面之间的跳转和传参会使用我们的路由: vue-router 基础使用 要使用我们需要先给我们的项目添加依赖:vue-router。使用命令下载: npm install vue-router 使用路由会涉及到下面几个对象:…...

使用VGG-16模型来对海贼王中的角色进行图像分类

动漫角色识别是计算机视觉的典型应用场景&#xff0c;可用于周边商品分类、动画制作辅助等。 这个案例是一个经典的深度学习应用&#xff0c;用于图像分类任务&#xff0c;它使用了一个自定义的VGG-16模型来对《海贼王》中的七个角色进行分类&#xff0c;演示如何将经典CNN模型…...

OSI 网络七层模型中的物理层、数据链路层、网络层

一、OSI 七层模型 物理层、数据链路层、网络层、传输层、会话层、表示层、应用层 1. 物理层&#xff08;Physical Layer&#xff09; 功能&#xff1a;传输原始的比特流&#xff08;0和1&#xff09;&#xff0c;通过物理介质&#xff08;如电缆、光纤、无线电波&#xff09;…...

WooCommerce缓存教程 – 如何防止缓存破坏你的WooCommerce网站?

我们在以前的文章中探讨过如何加快你的WordPress网站的速度&#xff0c;并研究过各种形式的缓存。 然而&#xff0c;像那些使用WooCommerce的动态电子商务网站&#xff0c;在让缓存正常工作方面往往会面临重大挑战。 在本指南中&#xff0c;我们将告诉你如何为WooCommerce设置…...

AtCoder Beginner Contest 406(ABCD)

前言 我仿佛在梦游…… 一、A - Not Acceptable #include <bits/stdc.h> using namespace std;typedef long long ll; typedef pair<int,int> pii;void solve() {int dueH,dueM,upH,upM;cin>>dueH>>dueM>>upH>>upM;if(upH>dueH){cou…...

第J2周:ResNet50V2 算法实战与解析

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 学习目标 ✅ 根据TensorFlow代码&#xff0c;编写出相应的Python代码 ✅ 了解ResNetV2和ResNet模型的区别 一、环境配置 二、数据预处理 三、创建、划分数据…...