如何有效地使用ChatGPT写小说讲故事?
构思故事情节,虽有趣但耗时,容易陷入写作瓶颈。ChatGPT可提供灵感,帮你解决写作难题。要写出引人入胜的故事,关键在于抓住八个要素——主题、人物、视角、背景、情节、语气、冲突和解决办法。
直接给出故事模板,你可以在此基础上修改自己想要的故事元素:
-
主题:找回自我
-
主角:贝西,一名28岁女性,缺乏目标感,有一头棕色头发,是一个深思熟虑的人,渴望找到生活的目标,并对未知有恐惧。
-
视角:第一人称。
-
场景:主要地点——沿海小镇;其他——玛雅的公寓、当地的咖啡馆、社区中心、景点。
-
剧情:第一幕——玛雅感到被困住了,想要一个新的开始。第二幕——参与沿海小镇的社区项目。第三幕——发现自我。
-
语气:反思和鼓舞人心。
-
冲突:主要冲突是玛雅对其身份的内在斗争。她还必须面对外部压力,例如来自家人的阻力以及在一个新环境中的常见问题。
-
解决办法:玛雅拥抱真实的自己,并充满激情和兴奋地继续她的生活。
贝西的故事模板
但是,这样生成的结果大多停留在表面上——换句话说,它们并没有深入挖掘,写得有些普通——一个女孩通过社区项目踏上了自我发现之旅,她以前可能已经这样做过——所以弄清楚什么能让你的故事从其他故事中脱颖而出才是最重要的。
要记住ChatGPT仍是一个机器,你的工作是耐心地使用并不断地训练调教它(要想得到更优质故事的话),并将其作为灵感启发者,从而帮助你创作出既能变现又能传世的作品。
出处:https://www.94c.cc/info/write-fiction-stories-with-ChatGPT.html
相关文章:

如何有效地使用ChatGPT写小说讲故事?
构思故事情节,虽有趣但耗时,容易陷入写作瓶颈。ChatGPT可提供灵感,帮你解决写作难题。要写出引人入胜的故事,关键在于抓住八个要素——主题、人物、视角、背景、情节、语气、冲突和解决办法。 直接给出故事模板,你可…...

原生求生记:揭秘UniApp的原生能力限制
文章目录 1. 样式适配问题2. 性能问题3. 原生能力限制4. 插件兼容性问题5. 第三方组件库兼容性问题6. 全局变量污染7. 调试和定位问题8. 版本兼容性问题9. 前端生态限制10. 文档和支持附录:「简历必备」前后端实战项目(推荐:⭐️⭐️⭐️⭐️…...

网络编程 IO多路复用 [epoll版] (TCP网络聊天室)
//head.h 头文件 //TcpGrpSer.c 服务器端 //TcpGrpUsr.c 客户端 通过IO多路复用实现服务器在单进程单线程下可以与多个客户端交互 API epoll函数 #include<sys/epoll.h> int epoll_create(int size); 功能:创建一个epoll句柄//创建红黑树根…...

【go-zero】浅析 01
“github.com/google/uuid” uuid.New().String() go-zero 文档 https://www.w3cschool.cn/gozero/ go-zero 官网 https://go-zero.dev/ 快速开始: $ mkdir go-zero-demo $ cd go-zero-demo $ go mod init go-zero-demo $ goctl api new greet $ go mod tidy Done…...

音视频——视频流H264编码格式
1 H264介绍 我们了解了什么是宏快,宏快作为压缩视频的最小的一部分,需要被组织,然后在网络之间做相互传输。 H264更深层次 —》宏块 太浅了 如果单纯的用宏快来发送数据是杂乱无章的,就好像在没有集装箱 出现之前,…...

【使用深度学习的城市声音分类】使用从提取音频特征(频谱图)中提取的深度学习进行声音分类研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
机器学习完整路径
一个机器学习项目从开始到结束大致分为 5 步,分别是定义问题、收集数据和预处理、选择算法和确定模型、训练拟合模型、评估并优化模型性能。是一个循环迭代的过程,优秀的模型都是一次次迭代的产物。 定义问题 要剖析业务场景,设定清晰的目标…...

CK-00靶机详解
CK-00靶机详解 靶场下载地址:https://download.vulnhub.com/ck/CK-00.zip 这个靶场扫描到ip打开后发现主页面css是有问题的,一般这种情况就是没有配置域名解析。 我们网站主页右击查看源代码,发现一个域名。 把域名添加到我们hosts文件中。…...

17-C++ 数据结构 - 栈
📖 1.1 什么是栈 栈是一种线性数据结构,具有后进先出(Last-In-First-Out,LIFO)的特点。可以类比为装满盘子的餐桌,每次放盘子都放在最上面,取盘子时也从最上面取,因此最后放进去的盘…...

Redis如何实现排行榜?
今天给大家简单聊聊 Redis Sorted Set 数据类型底层的实现原理和游戏排行榜实战。特别简单,一点也不深入,也就 7 张图,粉丝可放心食用,哈哈哈哈哈~~~~。 1. 是什么 Sorted Sets 与 Sets 类似,是一种集合类型ÿ…...

Pycharm debug程序,跳转至指定循环条件/循环次数
在断点出右键,然后设置条件 示例 for i in range(1,100):a i 1b i 2print(a, b, i) 注意: 1、你应该debug断点在循环后的位置而不是循环上的位置,然后你就可以设置你的条件进入到指定的循环上了 2、设置条件,要使用等于符号…...
react实现markdown
参考:https://blog.csdn.net/Jack_lzx/article/details/118495763 参考:https://blog.csdn.net/m0_48474585/article/details/119742984 0. 示例 用react实现markdown编辑器 1.基本布局及样式 <><div classNametf_editor_header>头部&…...

HTTP请求走私漏洞简单分析
文章目录 HTTP请求走私漏洞的产生HTTP请求走私漏洞的分类HTTP请求走私攻击的危害确认HTTP请求走私漏洞通过时间延迟技术确认CL漏洞通过时间延迟技术寻找TE.CL漏洞 使用差异响应内容确认漏洞通过差异响应确认CL.TE漏洞通过差异响应确认TE.CL漏洞 请求走私漏洞的利用通过请求漏洞…...

BI-SQL丨两表差异比较
BOSS:哎,白茶,我们最近新上了一个系统,后续有一些数据要进行源切换,这个能整么? 白茶:没问题,可以整! BOSS:哦,对了,差点忘记告诉你了…...
ZooKeeper 选举的过半机制防止脑裂
结论: Zookeeper采用过半选举机制,防止了脑裂。 原因: 如果有5台节点,leader联系不上了,其他4个节点由于超过半数,所以又选出了一个leader,当失联的leader恢复网络时,发现集群中已…...

【图论】树上差分(边差分)
一.简介 其实点差分和边差分区别不大。 点差分中,d数组存储的是树上的节点 边差分中,d数组存储的是当前节点到父节点的那条边的差分值。 指定注意的是:边差分中因为根连的父节点是虚点,所以遍历结果时应当忽略! 二…...

RT1052的定时器
文章目录 1 通用定时器1.1 定时器框图1.2 实现周期性中断 2 相关寄存器3 定时器配置3.1 时钟使能3.2 初始化GPT1定时器3.2.1 base3.2.2 initConfig3.2.2.1 clockSorce3.2.2.2 divider3.2.2.3 enablexxxxx 3.3 设置 GPT1 比较值3.3.1 base3.3.2 channel3.3.3 value 3.4 设置 GPT…...

opencv python 训练自己的分类器
源码下载 一、分类器制作 1.样本准备 收集好你所需的正样本,和负样本,分别保存在不同文件夹 在pycharm新建项目,项目结构如下:has_mask文件夹放置正样本,no_mask文件夹放置负样本 安装opencv,把opencv包…...

详解Mybatis之分页插件【PageHelper】
编译软件:IntelliJ IDEA 2019.2.4 x64 操作系统:win10 x64 位 家庭版 Maven版本:apache-maven-3.6.3 Mybatis版本:3.5.6 文章目录 一. 什么是分页?二. 为什么使用分页?三. 如何设计一个Page类(分…...

【基于矢量射线的衍射积分 (VRBDI)】基于矢量射线的衍射积分 (VRBDI) 和仿真工具(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...