当前位置: 首页 > news >正文

一起学算法(插入排序篇)

概念:

插入排序(inertion Sort)一般也被称为直接插入排序,是一种简单的直观的排序算法

工作原理:将待排列元素划分为(已排序)和(未排序)两部分,每次从(未排序的)元素选择一个插入到(已排序的)元素中的正确位置,这个位置类似于平时打扑克牌摸牌的操作,右手摸牌,根据牌面的大小放到左手边正确的位置上

 具体实现:使用双层循环,外层循环枚举除了第一个元素之外的所有元素,内层循环遍历当前元素前面的有序表,进行待插入位置查找,并进行移动

 public void insertSort(int[] arr) {if (arr == null || arr.length == 0) {return;}for (int i = 1; i < arr.length; i++) { // 待插入元素的索引int insertEle = arr[i];//对待插入元素进行保存int j = i - 1;//有序区中存在多少个元素就需要遍历多少次for (; j >= 0; j--){if (arr[j] >= insertEle) {arr[j + 1] = arr[j];} else {break;}}//直到找到有序区第一个比待插入元素小的位置,然后在j+1上添加元素arr[j + 1] = insertEle;}}

leetcode题:

删除某些元素后的数组均值

class Solution {public double trimMean(int[] arr) {if(arr==null||arr.length==0){return 0;}Arrays.sort(arr);int count= arr.length/20;double sum=0;for (int i =count; i < arr.length-count; i++) {sum+=arr[i];}return sum/(arr.length-2*count);}
}

去掉最低工资和最高工资后的平均工资

class Solution {public double average(int[] salary) {insertSort(salary);double sum=0;for(int i=1;i<salary.length-1;i++){sum+=salary[i];}return sum/(salary.length-2);}private void insertSort(int[] arr) {if (arr == null || arr.length == 0) {return;}for (int i = 1; i < arr.length; i++) { // 待插入元素的索引int insertEle = arr[i];//对待插入元素进行保存int j = i - 1;//有序区中存在多少个元素就需要遍历多少次for (; j >= 0; j--){if (arr[j] >= insertEle) {arr[j + 1] = arr[j];} else {break;}}//直到找到有序区第一个比待插入元素小的位置,然后在j+1上添加元素arr[j + 1] = insertEle;}}
}

学生分数的最小差值

class Solution {//插入排序public void insertSort(int[] nums){if(nums==null||nums.length==0){return;}for (int i =1; i <nums.length; i++) {int insertEle=nums[i];int j=i-1;for(;j>=0;j--){if(nums[j]>=insertEle){nums[j+1]=nums[j];}else{break;}}nums[j+1]=insertEle;}}public int minimumDifference(int[] nums, int k) {if (nums.length == 1) {return 0;}insertSort(nums);int min=nums[k-1]-nums[0];for (int i = 1; i <=nums.length-k; i++) {min=Math.min(min,nums[i+k-1]-nums[i]);}return min;}
}

相关文章:

一起学算法(插入排序篇)

概念&#xff1a; 插入排序&#xff08;inertion Sort&#xff09;一般也被称为直接插入排序&#xff0c;是一种简单的直观的排序算法 工作原理&#xff1a;将待排列元素划分为&#xff08;已排序&#xff09;和&#xff08;未排序&#xff09;两部分&#xff0c;每次从&…...

JVM基础篇-本地方法栈与堆

JVM基础篇-本地方法栈与堆 本地方法栈 什么是本地方法? 本地方法即那些不是由java层面实现的方法&#xff0c;而是由c/c实现交给java层面进行调用&#xff0c;这些方法在java中使用native关键字标识 public native int hashCode()本地方法栈的作用? 为本地方法提供内存空…...

防雷保护区如何划分,防雷分区概念LPZ介绍

在防雷设计中&#xff0c;很重要的一点就是防雷分区的划分&#xff0c;只有先划分好防雷区域等级&#xff0c;才好做出比较好的防雷器设计方案。 因为标准对不同区安装的防雷浪涌保护器要求是不一样的。 那么&#xff0c;防雷保护区是如何划分的呢&#xff1f; 如上图所示&…...

随手笔记——3D−3D:ICP求解

随手笔记——3D−3D&#xff1a;ICP求解 使用 SVD 求解 ICP使用非线性优化来求解 ICP 原理参见 https://blog.csdn.net/jppdss/article/details/131919483 使用 SVD 求解 ICP 使用两幅 RGB-D 图像&#xff0c;通过特征匹配获取两组 3D 点&#xff0c;最后用 ICP 计算它们的位…...

Python调用各大机器翻译API大全

过去的二三年中&#xff0c;我一直关注的是机器翻译API在自动化翻译过程中的应用&#xff0c;包括采用CAT工具和Python编程语言来调用机器翻译API&#xff0c;然后再进行译后编辑&#xff0c;从而达到快速翻译的目的。 然而&#xff0c;我发现随着人工智能的发展&#xff0c;很…...

重生之我要学C++第六天

这篇文章的主要内容是const以及权限问题、static关键字、友元函数和友元类&#xff0c;希望对大家有所帮助&#xff0c;点赞收藏评论支持一下吧&#xff01; 更多优质内容跳转&#xff1a; 专栏&#xff1a;重生之C启程(文章平均质量分93) 目录 const以及权限问题 1.const修饰…...

SpringBoot中ErrorPage(错误页面)的使用--【ErrorPage组件】

SpringBoot系列文章目录 SpringBoot知识范围-学习步骤–【思维导图知识范围】 文章目录 SpringBoot系列文章目录本系列校训 SpringBoot技术很多很多环境及工具&#xff1a;必要的知识深层一些的知识 上效果图在Spring Boot里使用ErrorPage还要注意的是 配套资源作业&#xff…...

【Android】APP网络优化学习笔记

网络优化原因 进行网络优化对于移动应用程序而言非常重要&#xff0c;原因如下&#xff1a; 用户体验&#xff1a; 网络连接是移动应用程序的核心功能之一。通过进行网络优化&#xff0c;可以提高应用的加载速度和响应速度&#xff0c;减少用户等待时间&#xff0c;提供更流…...

简单的知识图谱可视化+绘制nx.Graph()时报错TypeError: ‘_AxesStack‘ object is not callable

绘制nx.Graph时报错TypeError: _AxesStack object is not callable 写在最前面知识图谱可视化预期报错可能的原因 原代码原因确认解决后的代码解决&#xff01; 写在最前面 实现一个简单的知识图谱的可视化功能。 使用了NetworkX库来构建知识图谱&#xff0c;并使用matplotlib…...

【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据)

【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.分块代码5.1 fun.m5.2 main.m6.完整代码6.1 fun.m6.2 main.m7.运行结果1.模型原理 基于粒子群优化算法(Particle Swarm Optimization, PSO)优…...

【机器学习】Cost Function for Logistic Regression

Cost Function for Logistic Regression 1. 平方差能否用于逻辑回归&#xff1f;2. 逻辑损失函数loss3. 损失函数cost附录 导入所需的库 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from plt_logistic_loss import plt_logistic_cost, plt_two_…...

【EI/SCOPUS会议征稿】2023年第四届新能源与电气科技国际学术研讨会 (ISNEET 2023)

作为全球科技创新大趋势的引领者&#xff0c;中国一直在为科技创新创造越来越开放的环境&#xff0c;提高学术合作的深度和广度&#xff0c;构建惠及全民的创新共同体。这些努力为全球化和创建共享未来的共同体做出了新的贡献。 为交流近年来国内外在新能源和电气技术领域的最新…...

【计算机网络】10、ethtool

文章目录 一、ethtool1.1 常见操作1.1.1 展示设备属性1.1.2 改变网卡属性1.1.2.1 Auto-negotiation1.1.2.2 Speed 1.1.3 展示网卡驱动设置1.1.4 只展示 Auto-negotiation, RX and TX1.1.5 展示统计1.1.7 排除网络故障1.1.8 通过网口的 LED 区分网卡1.1.9 持久化配置&#xff08…...

什么是前端工程化?

工程化介绍 什么是前端工程化&#xff1f; 前端工程化是一种思想&#xff0c;而不是某种技术。主要目的是为了提高效率和降低成本&#xff0c;也就是说在开发的过程中可以提高开发效率&#xff0c;减少不必要的重复性工作等。 tip 现实生活举例 建房子谁不会呢&#xff1f;请…...

【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程

【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程 文章目录 【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程前言确定版本对应关系源码编译安装tiny-cuda-nn总结 前言 本人windows11下使用【Instant Neural Surface Reconstruction】算法时需要…...

Matlab 一种自适应搜索半径的特征提取方法

文章目录 一、简介二、实现代码参考资料一、简介 在之前的博客(C++ ID3决策树)中,提到过一种信息熵的概念,其中它表达的大致意思为:香农认为熵是指“当一件事情有多种可能情况时,这件事情发生某种情况的不确定性”,也就是指如果一个事情的不确定性越大,那么这个信息的熵…...

基于opencv的几种图像滤波

一、介绍 盒式滤波、均值滤波、高斯滤波、中值滤波、双边滤波、导向滤波。 boxFilter() blur() GaussianBlur() medianBlur() bilateralFilter() 二、代码 #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> …...

puppeteer代理的搭建和配置

puppeteer代理的搭建和配置 本文深入探讨了Puppeteer在网络爬虫和自动化测试中的重要角色&#xff0c;着重介绍了如何搭建和配置代理服务器&#xff0c;以优化Puppeteer的功能和性能。文章首先介绍了Puppeteer作为一个强大的Headless浏览器自动化工具的优势和应用场景&#xf…...

【简单认识MySQL的MHA高可用配置】

文章目录 一、简介1、概述2、MHA 的组成3&#xff0e;MHA 的特点4、MHA工作原理 二、搭建MHA高可用数据库群集1.主从复制2.MHA配置 三、故障模拟四、故障修复步骤&#xff1a; 一、简介 1、概述 MHA&#xff08;Master High Availability&#xff09;是一套优秀的MySQL高可用…...

【云原生】一文学会Docker存储所有特性

目录 1.Volumes 1.Volumes使用场景 2.持久将资源存放 3. 只读挂载 2.Bind mount Bind mounts使用场景 3.tmpfs mounts使用场景 4.Bind mounts和Volumes行为上的差异 5.docker file将存储内置到镜像中 6.volumes管理 1.查看存储卷 2.删除存储卷 3.查看存储卷的详细信息…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...