当前位置: 首页 > news >正文

mysql的主键选择

一.没有定义主键有什么问题

  • 如果定义了主键,那么InnoDB会使用主键作为聚簇索引
  • 如果没有定义主键,那么会使用第一非空的唯一索引(NOT NULL and UNIQUE INDEX)作为聚簇索引
  • 如果既没有主键也找不到合适的非空索引,那么InnoDB会自动生成一个不可见的名为row_id的列名为GEN_CLUST_INDEX的聚簇索引,该列是一个6字节的自增数值,随着插入而自增--补充:该全局row_id在代码实现上使用的是bigint unsigned类型,但实际上只给row_id留了6字节,这种设计就会存在一个问题:如果全局row_id一直涨,一直涨,直到2的48幂次-1时,这个时候再+1,row_id的低48位都为0,结果在插入新一行数据时,拿到的row_id就为0,存在主键冲突的可能性。

自动生成的名为row_id主键有什么问题

  • 使用不了主键索引,查询会进行全表扫描
  • 影响数据插入性能,插入数据需要生成ROW_ID,而生成的ROW_ID是全局共享的(InnoDB 维护了一个全局的 dictsys.row_id,所有未定义主键的表都共享该row_id),并发会导致锁竞争,影响性能

二.有主键,但是主键达到最大值有什么问题

如果申明了用int类型的数据库自增的主键,当主键达到最大值,再插入则主键不会再增长,而是报主键重复错误。
MySQL主键当达到最大值(如果为int类型,最大值为21亿多),此时再插入数据,会提示主键重复错误。

三.主键的选择

1.规范

1)规范推荐使用int,bigint 无符号做自增键

在《阿里巴巴 Java 开发手册》第五章 MySQL 规定第九条中,强制规定了单表的主键 id 必须为无符号的 bigint 类型,且是自增的。

MySQL开发规范中经常可以看到:

  • 推荐使用int,bigint 无符号做自增键
  • 禁止使用uuid做主键

关于主键的类型选择上最常见的争论是用整型还是字符型的问题,关于这个问题《高性能MySQL》一书中有明确论断:
整数通常是标识列的最好选择,因为它很快且可以使用AUTO_INCREAMENT,如果可能,应该避免使用字符串类型作为标识列,因为很消耗空间,且通常比数字类型慢。

如果是使用MyISAM,则就更不能用字符型,因为MyISAM默认会对字符型采用压缩引擎,从而导致查询变得非常慢。

2)规范背后的原因

通常主键 id 的数据类型有两种选择:字符串或者整数,主键通常要求是唯一的,如果使用字符串类型,我们可以选择 UUID 或者具有业务含义的字符串来作为主键。

对于 UUID 而言,它由 32 个字符+4 个'-'组成,长度为 36,虽然 UUID 能保证唯一性,但是它有两个致命的缺点:

  1. 不是递增的。MySQL 中索引的数据结构是 B+Tree,这种数据结构的特点是索引树上的节点的数据是有序的,而如果使用 UUID 作为主键,那么每次插入数据时,因为无法保证每次产生的 UUID 有序,所以就会出现新的 UUID 需要插入到索引树的中间去,这样可能会频繁地导致页分裂,使性能下降。
  2. 太占用内存。每个 UUID 由 36 个字符组成,在字符串进行比较时,需要从前往后比较,字符串越长,性能越差。另外字符串越长,占用的内存越大,由于页的大小是固定的,这样一个页上能存放的关键字数量就会越少,这样最终就会导致索引树的高度越大,在索引搜索的时候,发生的磁盘 IO 次数越多,性能越差。

对于整数的数字类型,MySQL 中主要有 int 和 bigint 类型。其中 int 占用 4 个字节,bigint 占用 8 个字节,这和 Java 中的 int 和 long 对应。如果使用无符号的 int 类型作为主键,那么主键的最大值为 2^32-1,即 4294967295,这个值不到 43 亿,似乎有点太小了。虽然一张表的数据,我们不可能让其达到 43 亿条(太大会影响性能),但是对于频繁进行插入、删除的表来说,43 亿这个值是可以达到的。而如果使用无符号的 bigint 类型的话,主键的最大值可以达到 2^64-1,这个数足够大了,如果以每秒插入 100 万条数据计算的,58 万年以后才能达到最大值。所以 bigint 作为主键的数据类型,完全不用担心超过最大值的问题。

而强制要求主键 id 是自增的,则是为了在数据插入的过程中,尽可能的避免索引树上页分裂的问题。

2.介绍下long和雪花id和uuid

1)主键id:

tinyint、smallint、mediumint,这三个不常用就不说了。无符号是设置了 unsigned 属性,表示不允许负值,这大致可以使正数的上限提高一倍。

以无符号int类型为例,42亿虽然看起来是个很大的数字,但是对于一些插入删除很频繁的业务来说,并非无法触达这个上限。特别是有的业务表设置的步长比较大,会导致id自增的速度更快。如果你的业务预期会产生很多数据,那么建议你在创建表时,直接使用bigint。

因为MySQL的主键策略:id自增值达到上限以后,再申请下一个 id 时,仍然是最大值,就会报主键重复错误。

如果bigint真的还不够使用的话,我们可以使用雪花算法生成的id做主键,由于其也是大致递增的,对性能也不会产生影响,只需要由bigint改成更大范围的decimal就行。

2)雪花id:

我之前文章已有介绍

3)UUID:

我之前文章已有介绍

3.实战:

在mysql新建3张结构一模一样的表

1)效率测试结果

每个表新增10w,30w,100w数据

在已有数据量为130W的时候:我们再来测试一下插入10w数据,看看会有什么结果: 

可以看出在数据量100W左右的时候,uuid的插入效率垫底,并且在后序增加了130W的数据,uudi的时间又直线下降。时间占用量总体可以打出的效率排名为:auto_key>random_key>uuid,uuid的效率最低,在数据量较大的情况下,效率直线下滑。

4.使用自增id的缺点

那么使用自增的id就完全没有坏处了吗?并不是,自增id也会存在以下几点问题:

①:别人一旦爬取你的数据库,就可以根据数据库的自增id获取到你的业务增长信息,很容易分析出你的经营情况

②:对于高并发的负载,innodb在按主键进行插入的时候会造成明显的锁争用,主键的上界会成为争抢的热点,因为所有的插入都发生在这里,并发插入会导致间隙锁竞争

③:Auto_Increment锁机制会造成自增锁的抢夺,有一定的性能损失

5.总结

总结:总体来看,效率简单排名为:auto_key>random_key>uuid,

但是,根据自己项目的需求,权衡利弊,选择三个中的一个就行了.

----------------------------------------------------------------------------------------------------

为什么?mysql不推荐使用uuid或者雪花id作为主键? - 知乎 (zhihu.com)
链接:https://juejin.cn/post/7206197077909782588
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章:

mysql的主键选择

一.没有定义主键有什么问题 如果定义了主键,那么InnoDB会使用主键作为聚簇索引如果没有定义主键,那么会使用第一非空的唯一索引(NOT NULL and UNIQUE INDEX)作为聚簇索引如果既没有主键也找不到合适的非空索引,那么In…...

Eureka 学习笔记1:服务端实例缓存

版本 awsVersion ‘1.11.277’ 缓存类型registryConcurrentHashMap<String, Map<String, Lease<InstanceInfo>>>AbstractInstanceRegistry成员变量readWriteCacheMapLoadingCacheResponseCacheImpl成员变量readOnlyCacheMapConcurrentMap<Key, Value>…...

vue : 无法加载文件 C:\Users\86182\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。

windows11&#xff1a; PS E:\VueProjects> vue vue : 无法加载文件 C:\Users\86182\AppData\Roaming\npm\vue.ps1&#xff0c;因为在此系统上禁止运行脚本。有关详细信息&#xff0c;请参阅 https:/ go.microsoft.com/fwlink/?LinkID135170 中的 about_Execution_Policie…...

FLinkCDC读取MySQl时间戳时区相关问题解决汇总

FlinkCDC时间问题timestamp等https://blog.csdn.net/qq_30529079/article/details/127809317 FLinkCDC读取MySQl中的日期问题https://blog.csdn.net/YPeiQi/article/details/130265653 关于flink1.11 flink sql使用cdc时区差8小时问题https://blog.csdn.net/weixin_44762298/…...

第三篇-Tesla P40+CentOS7+CUDA 11.7 部署实践

硬件环境 系统&#xff1a;CentOS-7 CPU: 14C28T 显卡&#xff1a;Tesla P40 24G 准备安装 驱动: 515 CUDA: 11.7 cuDNN: 8.9.2.26 安装依赖 yum clean all yum update yum install -y gcc gcc-c pciutils kernel-devel-$(uname -r) kernel-headers-$(uname -r)查看GPU信息…...

AC+FIT(瘦AP)配置浅谈

FIT ensp实验材料 &#xff1a;pc、路由器、三层交换机、二层交换机、ac、ap 保证连通性&#xff1a; 根据ac与ap设计好的ip配置&#xff0c;使之可以通讯 ac与ap可以实现跨网段管理 1、设置三层交换机的vlan 与vlanif信息 dhcp enable //开启dhcp ip pool forap //…...

【Python】PySpark 数据计算 ② ( RDD#flatMap 方法 | RDD#flatMap 语法 | 代码示例 )

文章目录 一、RDD#flatMap 方法1、RDD#flatMap 方法引入2、解除嵌套3、RDD#flatMap 语法说明 二、代码示例 - RDD#flatMap 方法 一、RDD#flatMap 方法 1、RDD#flatMap 方法引入 RDD#map 方法 可以 将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map…...

二叉树题目:左叶子之和

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;左叶子之和 出处&#xff1a;404. 左叶子之和 难度 3 级 题目描述 要求 给你二叉树的根结点 root \texttt{ro…...

Spark SQL报错: Task failed while writing rows.

错误 今天运行 Spark 任务时报了一个错误&#xff0c;如下所示&#xff1a; WARN scheduler.TaskSetManager: Lost task 9.0 in stage 3.0 (TID 69, xxx.xxx.xxx.com, executor 3): org.apache.spark.SparkException: Task failed while writing rows.at org.apache.spark.sq…...

Linux系统下U盘打不开: No application is registered as handling this file

简述 系统是之前就安装好使用的Ubuntu14.04&#xff0c;不过由于某些原因只安装到了机械硬盘中&#xff1b;最近新买了一块固态硬盘&#xff0c;所以打算把Ubuntu系统迁移到新的固态硬盘上&#xff1b; 当成功的迁移了系统之后发现其引导有点问题&#xff0c;导致多个系统启动不…...

07 定时器处理非活动连接(上)

07 定时器处理非活动连接&#xff08;上&#xff09; 基础知识 非活跃&#xff0c;是指客户端&#xff08;这里是浏览器&#xff09;与服务器端建立连接后&#xff0c;长时间不交换数据&#xff0c;一直占用服务器端的文件描述符&#xff0c;导致连接资源的浪费。 定时事件&a…...

python——案例四:判断字符串中的元素组成

案例四&#xff1a;判断字符串中的元素组成str"Hello World! 666" print(str.isalnum()) #判读所有的字符都是数字或者是字母 print(str.isalpha()) #判读所有的字符都是字母 print(str.isdigit()) #判读所有的字符都是数字 print(str.islower()) #判读所有的字符都是…...

一起学算法(插入排序篇)

概念&#xff1a; 插入排序&#xff08;inertion Sort&#xff09;一般也被称为直接插入排序&#xff0c;是一种简单的直观的排序算法 工作原理&#xff1a;将待排列元素划分为&#xff08;已排序&#xff09;和&#xff08;未排序&#xff09;两部分&#xff0c;每次从&…...

JVM基础篇-本地方法栈与堆

JVM基础篇-本地方法栈与堆 本地方法栈 什么是本地方法? 本地方法即那些不是由java层面实现的方法&#xff0c;而是由c/c实现交给java层面进行调用&#xff0c;这些方法在java中使用native关键字标识 public native int hashCode()本地方法栈的作用? 为本地方法提供内存空…...

防雷保护区如何划分,防雷分区概念LPZ介绍

在防雷设计中&#xff0c;很重要的一点就是防雷分区的划分&#xff0c;只有先划分好防雷区域等级&#xff0c;才好做出比较好的防雷器设计方案。 因为标准对不同区安装的防雷浪涌保护器要求是不一样的。 那么&#xff0c;防雷保护区是如何划分的呢&#xff1f; 如上图所示&…...

随手笔记——3D−3D:ICP求解

随手笔记——3D−3D&#xff1a;ICP求解 使用 SVD 求解 ICP使用非线性优化来求解 ICP 原理参见 https://blog.csdn.net/jppdss/article/details/131919483 使用 SVD 求解 ICP 使用两幅 RGB-D 图像&#xff0c;通过特征匹配获取两组 3D 点&#xff0c;最后用 ICP 计算它们的位…...

Python调用各大机器翻译API大全

过去的二三年中&#xff0c;我一直关注的是机器翻译API在自动化翻译过程中的应用&#xff0c;包括采用CAT工具和Python编程语言来调用机器翻译API&#xff0c;然后再进行译后编辑&#xff0c;从而达到快速翻译的目的。 然而&#xff0c;我发现随着人工智能的发展&#xff0c;很…...

重生之我要学C++第六天

这篇文章的主要内容是const以及权限问题、static关键字、友元函数和友元类&#xff0c;希望对大家有所帮助&#xff0c;点赞收藏评论支持一下吧&#xff01; 更多优质内容跳转&#xff1a; 专栏&#xff1a;重生之C启程(文章平均质量分93) 目录 const以及权限问题 1.const修饰…...

SpringBoot中ErrorPage(错误页面)的使用--【ErrorPage组件】

SpringBoot系列文章目录 SpringBoot知识范围-学习步骤–【思维导图知识范围】 文章目录 SpringBoot系列文章目录本系列校训 SpringBoot技术很多很多环境及工具&#xff1a;必要的知识深层一些的知识 上效果图在Spring Boot里使用ErrorPage还要注意的是 配套资源作业&#xff…...

【Android】APP网络优化学习笔记

网络优化原因 进行网络优化对于移动应用程序而言非常重要&#xff0c;原因如下&#xff1a; 用户体验&#xff1a; 网络连接是移动应用程序的核心功能之一。通过进行网络优化&#xff0c;可以提高应用的加载速度和响应速度&#xff0c;减少用户等待时间&#xff0c;提供更流…...

简单的知识图谱可视化+绘制nx.Graph()时报错TypeError: ‘_AxesStack‘ object is not callable

绘制nx.Graph时报错TypeError: _AxesStack object is not callable 写在最前面知识图谱可视化预期报错可能的原因 原代码原因确认解决后的代码解决&#xff01; 写在最前面 实现一个简单的知识图谱的可视化功能。 使用了NetworkX库来构建知识图谱&#xff0c;并使用matplotlib…...

【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据)

【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.分块代码5.1 fun.m5.2 main.m6.完整代码6.1 fun.m6.2 main.m7.运行结果1.模型原理 基于粒子群优化算法(Particle Swarm Optimization, PSO)优…...

【机器学习】Cost Function for Logistic Regression

Cost Function for Logistic Regression 1. 平方差能否用于逻辑回归&#xff1f;2. 逻辑损失函数loss3. 损失函数cost附录 导入所需的库 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from plt_logistic_loss import plt_logistic_cost, plt_two_…...

【EI/SCOPUS会议征稿】2023年第四届新能源与电气科技国际学术研讨会 (ISNEET 2023)

作为全球科技创新大趋势的引领者&#xff0c;中国一直在为科技创新创造越来越开放的环境&#xff0c;提高学术合作的深度和广度&#xff0c;构建惠及全民的创新共同体。这些努力为全球化和创建共享未来的共同体做出了新的贡献。 为交流近年来国内外在新能源和电气技术领域的最新…...

【计算机网络】10、ethtool

文章目录 一、ethtool1.1 常见操作1.1.1 展示设备属性1.1.2 改变网卡属性1.1.2.1 Auto-negotiation1.1.2.2 Speed 1.1.3 展示网卡驱动设置1.1.4 只展示 Auto-negotiation, RX and TX1.1.5 展示统计1.1.7 排除网络故障1.1.8 通过网口的 LED 区分网卡1.1.9 持久化配置&#xff08…...

什么是前端工程化?

工程化介绍 什么是前端工程化&#xff1f; 前端工程化是一种思想&#xff0c;而不是某种技术。主要目的是为了提高效率和降低成本&#xff0c;也就是说在开发的过程中可以提高开发效率&#xff0c;减少不必要的重复性工作等。 tip 现实生活举例 建房子谁不会呢&#xff1f;请…...

【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程

【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程 文章目录 【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程前言确定版本对应关系源码编译安装tiny-cuda-nn总结 前言 本人windows11下使用【Instant Neural Surface Reconstruction】算法时需要…...

Matlab 一种自适应搜索半径的特征提取方法

文章目录 一、简介二、实现代码参考资料一、简介 在之前的博客(C++ ID3决策树)中,提到过一种信息熵的概念,其中它表达的大致意思为:香农认为熵是指“当一件事情有多种可能情况时,这件事情发生某种情况的不确定性”,也就是指如果一个事情的不确定性越大,那么这个信息的熵…...

基于opencv的几种图像滤波

一、介绍 盒式滤波、均值滤波、高斯滤波、中值滤波、双边滤波、导向滤波。 boxFilter() blur() GaussianBlur() medianBlur() bilateralFilter() 二、代码 #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> …...

puppeteer代理的搭建和配置

puppeteer代理的搭建和配置 本文深入探讨了Puppeteer在网络爬虫和自动化测试中的重要角色&#xff0c;着重介绍了如何搭建和配置代理服务器&#xff0c;以优化Puppeteer的功能和性能。文章首先介绍了Puppeteer作为一个强大的Headless浏览器自动化工具的优势和应用场景&#xf…...