计算机视觉(四)神经网络与典型的机器学习步骤
文章目录
- 神经网络
- 生物神经元
- 人工神经元
- 激活函数
- 导数
- 人工神经网络
- “层”的通俗理解
- 前馈神经网络
- Delta学习规则
- 前馈神经网络的目标函数
- 梯度下降
- 输出层权重改变量
- 误差方向传播算法
- 误差传播迭代公式
- 简单的BP算例
- 随机梯度下降(SGD)
- Mini-batch Gradient Descent
- 典型的机器学习步骤
- 特征对学习的影响
- 深度学习的特征
- “连接主义”的兴衰史
- 深度学习与神经网络的区别
神经网络
-
神经网络:大量神经元节点按一定体系架构连接成的网状结构——大脑结构
-
神经网络的作用
- 分类
- 模式识别
- 连续值预测- 建立输入与输出的映射关系
生物神经元
人工神经元
每个神经元都是一个结构相似的独立单位,接受前一层传来的数据,并将这些数据的加权和输入非线性作用函数中,最后将非线性作用函数的输出结果传递给后一层。
激活函数
导数
人工神经网络
“层”的通俗理解
前馈神经网络
人工神经网络的一种,无反馈,可用一个有向无环图表示。
Delta学习规则
一种有监督学习算法。根据神经元的实际输出与期望输出差别来调整连接权。
前馈神经网络的目标函数
梯度下降
输出层权重改变量
误差方向传播算法
误差传播迭代公式
简单的BP算例
随机梯度下降(SGD)
Mini-batch Gradient Descent
典型的机器学习步骤
特征对学习的影响
深度学习的特征
深度学习是对神经网络模型的拓展。
“连接主义”的兴衰史
深度学习与神经网络的区别
相关文章:

计算机视觉(四)神经网络与典型的机器学习步骤
文章目录 神经网络生物神经元人工神经元激活函数导数 人工神经网络“层”的通俗理解 前馈神经网络Delta学习规则前馈神经网络的目标函数梯度下降输出层权重改变量 误差方向传播算法误差传播迭代公式简单的BP算例随机梯度下降(SGD)Mini-batch Gradient De…...

使用easyui的tree组件实现给角色快捷分配权限功能
这篇文章主要介绍怎么实现角色权限的快捷分配功能,不需要像大多数项目的授权一样,使用类似穿梭框的组件来授权。 具体实现:通过菜单树的勾选和取消勾选来给角色分配权限,在这之前,需要得到角色的菜单树,角色…...

Postman打不开/黄屏/一直转圈/Windows
环境背景 内网环境Postman-win64-8.11.1-Setup.exe 问题描述 电脑重启后,打开Postman后,出现加载弹窗:Preparing your workspaces…This might take a few minutes; 等待数分钟后,还是没有反应,于是关闭…...

使用SVM模型完成分类任务
SVM,即支持向量机(Support Vector Machine),是一种常见的机器学习算法,用于分类和回归分析。SVM的基本思想是将数据集映射到高维空间中,在该空间中找到一个最优的超平面,将不同类别的数据点分开…...

计算机毕设 深度学习实现行人重识别 - python opencv yolo Reid
文章目录 0 前言1 课题背景2 效果展示3 行人检测4 行人重识别5 其他工具6 最后 0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉…...

开发经验分享之:import引入包和@Autowired注入类有什么区别
大家好,我是三叔,很高兴这期又和大家见面了,一个奋斗在互联网的打工人。 import 和 Autowired 想必大家在 Java 开发中使用频率最多的关键字之一了把,这篇博客将解释这两个概念的区别和作用,帮助你更好地理解它们在Ja…...

MySQL和Oracle区别
由于SQL Server不常用,所以这里只针对MySQL数据库和Oracle数据库的区别 (1) 对事务的提交 MySQL默认是自动提交,而Oracle默认不自动提交,需要用户手动提交,需要在写commit;指令或者点击commit按钮 (2) 分页查询 MySQL是直接在SQL…...

QT--day6(人脸识别、图像处理)
人脸识别: /***********************************************************************************头文件****************************************************************************************/#ifndef WIDGET_H #define WIDGET_H#include <QWidget>…...

深度学习:常用优化器Optimizer简介
深度学习:常用优化器Optimizer简介 随机梯度下降SGD带动量的随机梯度下降SGD-MomentumSGDWAdamAdamW 随机梯度下降SGD 梯度下降算法是使权重参数沿着整个训练集的梯度方向下降,但往往深度学习的训练集规模很大,计算整个训练集的梯度需要很大…...

【算法心得】二维dp的状态转移狂练
LCS: LCS变式:使两个字符串变成一样的,删除的和最小 https://leetcode.cn/problems/minimum-ascii-delete-sum-for-two-strings/ 建表 m ∗ n m*n m∗n or ( m 1 ) ∗ ( n 1 ) (m1)*(n1) (m1)∗(n1)? 感觉 ( m 1 ) ∗ ( n …...

JMeter常用内置对象:vars、ctx、prev
在前文 Beanshell Sampler 与 Beanshell 断言 中,初步阐述了JMeter beanshell的使用,接下来归集整理了JMeter beanshell 中常用的内置对象及其使用。 注:示例使用JMeter版本为5.1 1. vars 如 API 文档 所言,这是定义变量的类&a…...

【C++从0到王者】第十四站:list基本使用及其介绍
文章目录 一、list基本介绍二、list基本使用1.尾插头插接口使用2.insert接口使用3.查找某个值所在的位置4.erase接口使用以及迭代器失效5.reverse6.sort7.merge8.unique9.remove11.splice 三、list基本使用完整代码 一、list基本介绍 如下所示,是库里面对list的基本…...

正则表达式、常用的正则
文章目录 正则表达式字符含意义RegExp函数RegExp属性RegExp对象方法RegExp构造函数的第二个参数 常用的正则例子只包含数字(包括正数、负数、零)只包含中英文数字及键盘上的特殊字符校验密码是否符合规则的正则校验http或者https端口号的正则只校验端口号…...

ST官方基于米尔STM32MP135开发板培训课程(一)
本文将以Myirtech的MYD-YF13X以及STM32MP135F-DK为例,讲解如何使用STM32CubeMX结合Developer package实现最小系统启动。 1.开发准备 1.1 Developer package准备 a.Developer package下载: https://www.st.com/en/embedded-software/stm32mp1dev.ht…...

组件(lvs,keeplive,orm,mysql,分布式事务)
lvs LVS 已经集成到Linux内核系统中,ipvsadm 是 LVS 的命令行管理工具。 目前有三种 IP 负载均衡技术( VS/NAT 网络地址转换 、VS/TUN IP 隧道技术实现虚拟服务器 和 VS/DR 直接路由); 八种调度算法:轮询 …...

《视觉SLAM十四讲》报错信息和解决方案
文章目录 ch4-Sophus编译报错ch5/imageBasics安装opencv4.x报错ch5/joinMap/CMakeLists.txt编译报错ch5/joinMap-pcl_viewer map.pcd报错 ch4-Sophus编译报错 报错信息: error: lvalue required as left operand of assignmentunit_complex_.real() 1.;^~ error:…...

golang 设置http请求代理
tinypoxy 搭建http代理服务可参考:tinyproxy搭建http代理_wangxiaoangg的博客-CSDN博客 需求背景: 项目需要访问一国外服务接口,地址被墙。购买香港ecs服务器,并在上面搭建http代理服务。 一 使用http和https代理 func main() {pr…...

我的会议(会议通知)
前言: 我们在实现了发布会议功能,我的会议功能的基础上,继续来实现会议通知的功能。 4.1实现的特色功能: 当有会议要参加时,通过查询会议通知可以知道会议的内容,以及当前会议状态(未读) 4.2思路…...

css实现水平居中
代码示例 <div class"box"><div class"box1"></div> </div>1.弹性布局:(推荐) display:flex; 这些要添加在父级的,是父级的属性 //父级添加display:flex; //父级添加jus…...

c刷题(一)
目录 1.输出100以内3的倍数 2.将3个数从大到小输出 3.打印100~200素数 方法一 方法二 4.显示printf的返回值 最大公约数 试除法 辗转相除法 九九乘法表 求十个数的最大值 1.输出100以内3的倍数 法一: int n 0; while (n*3 < 100){printf("%d &q…...

webpack
文章目录 webpack概念打包的场景为什么要打包在打包之外 - 翻译在打包之外 - 小动作 课程重点模块化利用立即执行函数来改变 作用域模块化的优点模块化方案的进化史AMD(成型比较早,应用不是很广泛)COMMONJSES6 MODULE webpack 的打包机制webp…...

反复 Failed to connect to github.com port 443 after xxx ms
前提:使用了代理,浏览器能稳定访问github,但git clone一直超时 解决方案: 1. git config --global http.proxy http://127.0.0.1:1080 2. 代理设置端口1080 3. 1080可自定义 感谢来自这篇博客和评论区的提醒:解决…...

ARM裸机-11
1、安装交叉编译工具工具 1.1、windows中装软件的特点 windows中装软件使用安装包,安装包解压后有两种情况:一种是一个安装文件 (.exe/.msi),双击进行安装,下一步直到安装完毕。安装完毕后会在桌面上生成快捷方式,我们平时使用快…...

centos7升级glibc
作者:吴业亮 博客:wuyeliang.blog.csdn.net 安装bison: yum install bison -y安装wget、bzip2、gcc、gcc-c和glibc-headers: yum -y install wget bzip2 gcc gcc-c glibc-headers安装make-4.2.1: wget http://ftp.…...

【OnnxRuntime】在linux下编译并安装C++版本的onnx-runtime
目录 安装C接口的onnx-runtime安装依赖项:下载源文件构建ONNX Runtime安装ONNX Runtime 安装C接口的onnx-runtime 安装依赖项: 安装CMake:可以通过包管理器(如apt、yum等)安装CMake。 安装C编译器:确保系…...

C#基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数的实现
本文实现基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数。 fftshift 函数将信号频谱的零频分量移动到数组中心, 本质是分别对调一三象限数据。 ifftshift完成相反的操作,本质是二四象限的数据块。 OpenCV中没有这两个函数如果使用需要自己实现。 实现代码如下: …...

【SpringBoot】笔记2
文章目录 45、web实验-抽取公共页面46、web实验-遍历数据与页面bug修改47、视图解析-【源码分析】-视图解析器与视图[暂时没看]48、拦截器-登录检查与静态资源放行49、拦截器-【源码分析】-拦截器的执行时机和原理50、文件上传-单文件与多文件上传的使用51、文件上传-【源码流程…...

Spring事务传播机制详细讲解
文章目录 一、事务传播机制1. REQUIRED:2. SUPPORTS:3. MANDATORY:4. REQUIRES_NEW:5. NOT_SUPPORTED:6. NEVER:7. NESTED: 二、事务传播机制分类1. 支持当前事务的传播机制:REQUIRE…...

kubernetes 集群搭建(kubeadm 方式)
目前生产部署 Kubernetes 集群主要有两种方式: (1) kubeadm Kubeadm 是一个 Kubernetes 官方提供的命令行工具,可以用来部署和管理 Kubernetes 集群。它主要用于在新的 Kubernetes 环境中初始化集群、添加或删除节点等操作。 K…...

基于ARM+FPGA的驱控一体机器人控制器设计
目前市场上工业机器人,数控机床等多轴运动控制系统普遍采用运动控制器加 伺服驱动器的分布式控制方式。在这种控制方式中,控制器一方面完成人机交互,另 一方面进行 NC 代码的解释执行,插补运算,继而将计算出来的位…...