深度学习:常用优化器Optimizer简介
深度学习:常用优化器Optimizer简介
- 随机梯度下降SGD
- 带动量的随机梯度下降SGD-Momentum
- SGDW
- Adam
- AdamW
随机梯度下降SGD
梯度下降算法是使权重参数沿着整个训练集的梯度方向下降,但往往深度学习的训练集规模很大,计算整个训练集的梯度需要很大的计算量,为了减少计算量加速训练,在此基础上演化出随机梯度下降算法(SGD),沿着随机选取的小批量数据的梯度方向下降。
假设权重记作 w w w,学习率为 α \alpha α,随机选取小批量样本计算梯度 d w dw dw,模型在更新权重的公式如下:
w t + 1 = w t − α × d w t w_{t+1} = w_t - \alpha \times dw_t wt+1=wt−α×dwt
带动量的随机梯度下降SGD-Momentum
虽然随机梯度下降是一种很受欢迎的优化方法,但其学习过程有时比较慢,引入动量momentum旨在提高收敛速度和收敛精确度,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。
动量是深度学习训练中,一个用于更新模型参数的超参数,假设记作mu,则引入动量的随机梯度下降算法公式为:
v t = m u × v t − 1 − α t × d w t v_t = mu \times v_{t-1} - \alpha_t \times dw_t vt=mu×vt−1−αt×dwt
w t + 1 = w t + v t w_{t+1} = w_t + v_t wt+1=wt+vt
其中,v初始化为0,mu一般的取值为0.5、0.9、0.99等。
要是当前时刻的梯度与历史时刻梯度方向相似,这种趋势在当前时刻则会加强;要是不同,则当前时刻的梯度方向减弱。前者能够加速收敛,后者能够减小摆动,提高收敛精确度。
SGDW
weight decay(权值衰减)的使用既不是为了提高收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度防止过拟合,若weight decay很大,则复杂的模型损失函数的值也就大。
SGDW 即 SGD+ Weight decate。SGDW直接将正则项的梯度加入反向传播的公式中,而不是loss函数。
详细算法可参照:

Adam
Adam是一种自适应优化器,对超参数的选择较为鲁棒。SGD-Momentum在SGD基础上增加了一阶动量,AdaGrad和AdaDelta在SGD基础上增加了二阶动量。Adam则是把一阶动量和二阶动量都用起来了。
一阶动量:
m t = β 1 × m t − 1 + ( 1 − β 1 ) × d w t m_t = \beta_1 \times m_{t-1} + (1-\beta_1) \times dw_t mt=β1×mt−1+(1−β1)×dwt
二阶动量:
v t = β 2 × v t − 1 + ( 1 − β 2 ) × d 2 w t v_t = \beta_2 \times v_{t-1} + (1-\beta_2) \times d^2w_t vt=β2×vt−1+(1−β2)×d2wt
β 1 \beta_1 β1和 β 2 \beta_2 β2是Adam的两个超参数。
详细算法可参照Adam原始论文:

AdamW
AdamW在Adam的基础上发展而来的一种自适应优化器。AdamW 即 Adam + Weight decate ,效果与 Adam + L2正则化相同,但是计算效率更高,因为L2正则化需要在loss中加入正则项,之后再算梯度,最后在反向传播,而AdamW直接将正则项的梯度加入反向传播的公式中,省去了手动在loss中加正则项这一步。
详细算法可参照AdamW原始论文:

相关文章:
深度学习:常用优化器Optimizer简介
深度学习:常用优化器Optimizer简介 随机梯度下降SGD带动量的随机梯度下降SGD-MomentumSGDWAdamAdamW 随机梯度下降SGD 梯度下降算法是使权重参数沿着整个训练集的梯度方向下降,但往往深度学习的训练集规模很大,计算整个训练集的梯度需要很大…...
【算法心得】二维dp的状态转移狂练
LCS: LCS变式:使两个字符串变成一样的,删除的和最小 https://leetcode.cn/problems/minimum-ascii-delete-sum-for-two-strings/ 建表 m ∗ n m*n m∗n or ( m 1 ) ∗ ( n 1 ) (m1)*(n1) (m1)∗(n1)? 感觉 ( m 1 ) ∗ ( n …...
JMeter常用内置对象:vars、ctx、prev
在前文 Beanshell Sampler 与 Beanshell 断言 中,初步阐述了JMeter beanshell的使用,接下来归集整理了JMeter beanshell 中常用的内置对象及其使用。 注:示例使用JMeter版本为5.1 1. vars 如 API 文档 所言,这是定义变量的类&a…...
【C++从0到王者】第十四站:list基本使用及其介绍
文章目录 一、list基本介绍二、list基本使用1.尾插头插接口使用2.insert接口使用3.查找某个值所在的位置4.erase接口使用以及迭代器失效5.reverse6.sort7.merge8.unique9.remove11.splice 三、list基本使用完整代码 一、list基本介绍 如下所示,是库里面对list的基本…...
正则表达式、常用的正则
文章目录 正则表达式字符含意义RegExp函数RegExp属性RegExp对象方法RegExp构造函数的第二个参数 常用的正则例子只包含数字(包括正数、负数、零)只包含中英文数字及键盘上的特殊字符校验密码是否符合规则的正则校验http或者https端口号的正则只校验端口号…...
ST官方基于米尔STM32MP135开发板培训课程(一)
本文将以Myirtech的MYD-YF13X以及STM32MP135F-DK为例,讲解如何使用STM32CubeMX结合Developer package实现最小系统启动。 1.开发准备 1.1 Developer package准备 a.Developer package下载: https://www.st.com/en/embedded-software/stm32mp1dev.ht…...
组件(lvs,keeplive,orm,mysql,分布式事务)
lvs LVS 已经集成到Linux内核系统中,ipvsadm 是 LVS 的命令行管理工具。 目前有三种 IP 负载均衡技术( VS/NAT 网络地址转换 、VS/TUN IP 隧道技术实现虚拟服务器 和 VS/DR 直接路由); 八种调度算法:轮询 …...
《视觉SLAM十四讲》报错信息和解决方案
文章目录 ch4-Sophus编译报错ch5/imageBasics安装opencv4.x报错ch5/joinMap/CMakeLists.txt编译报错ch5/joinMap-pcl_viewer map.pcd报错 ch4-Sophus编译报错 报错信息: error: lvalue required as left operand of assignmentunit_complex_.real() 1.;^~ error:…...
golang 设置http请求代理
tinypoxy 搭建http代理服务可参考:tinyproxy搭建http代理_wangxiaoangg的博客-CSDN博客 需求背景: 项目需要访问一国外服务接口,地址被墙。购买香港ecs服务器,并在上面搭建http代理服务。 一 使用http和https代理 func main() {pr…...
我的会议(会议通知)
前言: 我们在实现了发布会议功能,我的会议功能的基础上,继续来实现会议通知的功能。 4.1实现的特色功能: 当有会议要参加时,通过查询会议通知可以知道会议的内容,以及当前会议状态(未读) 4.2思路…...
css实现水平居中
代码示例 <div class"box"><div class"box1"></div> </div>1.弹性布局:(推荐) display:flex; 这些要添加在父级的,是父级的属性 //父级添加display:flex; //父级添加jus…...
c刷题(一)
目录 1.输出100以内3的倍数 2.将3个数从大到小输出 3.打印100~200素数 方法一 方法二 4.显示printf的返回值 最大公约数 试除法 辗转相除法 九九乘法表 求十个数的最大值 1.输出100以内3的倍数 法一: int n 0; while (n*3 < 100){printf("%d &q…...
webpack
文章目录 webpack概念打包的场景为什么要打包在打包之外 - 翻译在打包之外 - 小动作 课程重点模块化利用立即执行函数来改变 作用域模块化的优点模块化方案的进化史AMD(成型比较早,应用不是很广泛)COMMONJSES6 MODULE webpack 的打包机制webp…...
反复 Failed to connect to github.com port 443 after xxx ms
前提:使用了代理,浏览器能稳定访问github,但git clone一直超时 解决方案: 1. git config --global http.proxy http://127.0.0.1:1080 2. 代理设置端口1080 3. 1080可自定义 感谢来自这篇博客和评论区的提醒:解决…...
ARM裸机-11
1、安装交叉编译工具工具 1.1、windows中装软件的特点 windows中装软件使用安装包,安装包解压后有两种情况:一种是一个安装文件 (.exe/.msi),双击进行安装,下一步直到安装完毕。安装完毕后会在桌面上生成快捷方式,我们平时使用快…...
centos7升级glibc
作者:吴业亮 博客:wuyeliang.blog.csdn.net 安装bison: yum install bison -y安装wget、bzip2、gcc、gcc-c和glibc-headers: yum -y install wget bzip2 gcc gcc-c glibc-headers安装make-4.2.1: wget http://ftp.…...
【OnnxRuntime】在linux下编译并安装C++版本的onnx-runtime
目录 安装C接口的onnx-runtime安装依赖项:下载源文件构建ONNX Runtime安装ONNX Runtime 安装C接口的onnx-runtime 安装依赖项: 安装CMake:可以通过包管理器(如apt、yum等)安装CMake。 安装C编译器:确保系…...
C#基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数的实现
本文实现基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数。 fftshift 函数将信号频谱的零频分量移动到数组中心, 本质是分别对调一三象限数据。 ifftshift完成相反的操作,本质是二四象限的数据块。 OpenCV中没有这两个函数如果使用需要自己实现。 实现代码如下: …...
【SpringBoot】笔记2
文章目录 45、web实验-抽取公共页面46、web实验-遍历数据与页面bug修改47、视图解析-【源码分析】-视图解析器与视图[暂时没看]48、拦截器-登录检查与静态资源放行49、拦截器-【源码分析】-拦截器的执行时机和原理50、文件上传-单文件与多文件上传的使用51、文件上传-【源码流程…...
Spring事务传播机制详细讲解
文章目录 一、事务传播机制1. REQUIRED:2. SUPPORTS:3. MANDATORY:4. REQUIRES_NEW:5. NOT_SUPPORTED:6. NEVER:7. NESTED: 二、事务传播机制分类1. 支持当前事务的传播机制:REQUIRE…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
