当前位置: 首页 > news >正文

深度学习:常用优化器Optimizer简介

深度学习:常用优化器Optimizer简介

  • 随机梯度下降SGD
  • 带动量的随机梯度下降SGD-Momentum
  • SGDW
  • Adam
  • AdamW

随机梯度下降SGD

梯度下降算法是使权重参数沿着整个训练集的梯度方向下降,但往往深度学习的训练集规模很大,计算整个训练集的梯度需要很大的计算量,为了减少计算量加速训练,在此基础上演化出随机梯度下降算法(SGD),沿着随机选取的小批量数据的梯度方向下降。
假设权重记作 w w w,学习率为 α \alpha α,随机选取小批量样本计算梯度 d w dw dw,模型在更新权重的公式如下:
w t + 1 = w t − α × d w t w_{t+1} = w_t - \alpha \times dw_t wt+1=wtα×dwt

带动量的随机梯度下降SGD-Momentum

虽然随机梯度下降是一种很受欢迎的优化方法,但其学习过程有时比较慢,引入动量momentum旨在提高收敛速度收敛精确度,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。
动量是深度学习训练中,一个用于更新模型参数的超参数,假设记作mu,则引入动量的随机梯度下降算法公式为:
v t = m u × v t − 1 − α t × d w t v_t = mu \times v_{t-1} - \alpha_t \times dw_t vt=mu×vt1αt×dwt
w t + 1 = w t + v t w_{t+1} = w_t + v_t wt+1=wt+vt
其中,v初始化为0,mu一般的取值为0.5、0.9、0.99等。
要是当前时刻的梯度与历史时刻梯度方向相似,这种趋势在当前时刻则会加强;要是不同,则当前时刻的梯度方向减弱。前者能够加速收敛,后者能够减小摆动,提高收敛精确度。

SGDW

weight decay(权值衰减)的使用既不是为了提高收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度防止过拟合,若weight decay很大,则复杂的模型损失函数的值也就大。

SGDW 即 SGD+ Weight decate。SGDW直接将正则项的梯度加入反向传播的公式中,而不是loss函数。
详细算法可参照:
在这里插入图片描述

Adam

Adam是一种自适应优化器,对超参数的选择较为鲁棒。SGD-Momentum在SGD基础上增加了一阶动量,AdaGrad和AdaDelta在SGD基础上增加了二阶动量。Adam则是把一阶动量和二阶动量都用起来了。
一阶动量:
m t = β 1 × m t − 1 + ( 1 − β 1 ) × d w t m_t = \beta_1 \times m_{t-1} + (1-\beta_1) \times dw_t mt=β1×mt1+(1β1)×dwt
二阶动量:
v t = β 2 × v t − 1 + ( 1 − β 2 ) × d 2 w t v_t = \beta_2 \times v_{t-1} + (1-\beta_2) \times d^2w_t vt=β2×vt1+(1β2)×d2wt
β 1 \beta_1 β1 β 2 \beta_2 β2是Adam的两个超参数。

详细算法可参照Adam原始论文:
在这里插入图片描述

AdamW

AdamW在Adam的基础上发展而来的一种自适应优化器。AdamW 即 Adam + Weight decate ,效果与 Adam + L2正则化相同,但是计算效率更高,因为L2正则化需要在loss中加入正则项,之后再算梯度,最后在反向传播,而AdamW直接将正则项的梯度加入反向传播的公式中,省去了手动在loss中加正则项这一步。

详细算法可参照AdamW原始论文:
在这里插入图片描述

相关文章:

深度学习:常用优化器Optimizer简介

深度学习:常用优化器Optimizer简介 随机梯度下降SGD带动量的随机梯度下降SGD-MomentumSGDWAdamAdamW 随机梯度下降SGD 梯度下降算法是使权重参数沿着整个训练集的梯度方向下降,但往往深度学习的训练集规模很大,计算整个训练集的梯度需要很大…...

【算法心得】二维dp的状态转移狂练

LCS: LCS变式:使两个字符串变成一样的,删除的和最小 https://leetcode.cn/problems/minimum-ascii-delete-sum-for-two-strings/ 建表 m ∗ n m*n m∗n or ( m 1 ) ∗ ( n 1 ) (m1)*(n1) (m1)∗(n1)? 感觉 ( m 1 ) ∗ ( n …...

JMeter常用内置对象:vars、ctx、prev

在前文 Beanshell Sampler 与 Beanshell 断言 中,初步阐述了JMeter beanshell的使用,接下来归集整理了JMeter beanshell 中常用的内置对象及其使用。 注:示例使用JMeter版本为5.1 1. vars 如 API 文档 所言,这是定义变量的类&a…...

【C++从0到王者】第十四站:list基本使用及其介绍

文章目录 一、list基本介绍二、list基本使用1.尾插头插接口使用2.insert接口使用3.查找某个值所在的位置4.erase接口使用以及迭代器失效5.reverse6.sort7.merge8.unique9.remove11.splice 三、list基本使用完整代码 一、list基本介绍 如下所示,是库里面对list的基本…...

正则表达式、常用的正则

文章目录 正则表达式字符含意义RegExp函数RegExp属性RegExp对象方法RegExp构造函数的第二个参数 常用的正则例子只包含数字(包括正数、负数、零)只包含中英文数字及键盘上的特殊字符校验密码是否符合规则的正则校验http或者https端口号的正则只校验端口号…...

ST官方基于米尔STM32MP135开发板培训课程(一)

本文将以Myirtech的MYD-YF13X以及STM32MP135F-DK为例,讲解如何使用STM32CubeMX结合Developer package实现最小系统启动。 1.开发准备 1.1 Developer package准备 a.Developer package下载: ‍https://www.st.com/en/embedded-software/stm32mp1dev.ht…...

组件(lvs,keeplive,orm,mysql,分布式事务)

lvs LVS 已经集成到Linux内核系统中,ipvsadm 是 LVS 的命令行管理工具。 目前有三种 IP 负载均衡技术( VS/NAT 网络地址转换 、VS/TUN IP 隧道技术实现虚拟服务器 和 VS/DR 直接路由); 八种调度算法:轮询 …...

《视觉SLAM十四讲》报错信息和解决方案

文章目录 ch4-Sophus编译报错ch5/imageBasics安装opencv4.x报错ch5/joinMap/CMakeLists.txt编译报错ch5/joinMap-pcl_viewer map.pcd报错 ch4-Sophus编译报错 报错信息: error: lvalue required as left operand of assignmentunit_complex_.real() 1.;^~ error:…...

golang 设置http请求代理

tinypoxy 搭建http代理服务可参考:tinyproxy搭建http代理_wangxiaoangg的博客-CSDN博客 需求背景: 项目需要访问一国外服务接口,地址被墙。购买香港ecs服务器,并在上面搭建http代理服务。 一 使用http和https代理 func main() {pr…...

我的会议(会议通知)

前言: 我们在实现了发布会议功能,我的会议功能的基础上,继续来实现会议通知的功能。 4.1实现的特色功能: 当有会议要参加时,通过查询会议通知可以知道会议的内容,以及当前会议状态(未读) 4.2思路…...

css实现水平居中

代码示例 <div class"box"><div class"box1"></div> </div>1.弹性布局&#xff1a;&#xff08;推荐&#xff09; display:flex&#xff1b; 这些要添加在父级的&#xff0c;是父级的属性 //父级添加display:flex; //父级添加jus…...

c刷题(一)

目录 1.输出100以内3的倍数 2.将3个数从大到小输出 3.打印100~200素数 方法一 方法二 4.显示printf的返回值 最大公约数 试除法 辗转相除法 九九乘法表 求十个数的最大值 1.输出100以内3的倍数 法一&#xff1a; int n 0; while (n*3 < 100){printf("%d &q…...

webpack

文章目录 webpack概念打包的场景为什么要打包在打包之外 - 翻译在打包之外 - 小动作 课程重点模块化利用立即执行函数来改变 作用域模块化的优点模块化方案的进化史AMD&#xff08;成型比较早&#xff0c;应用不是很广泛&#xff09;COMMONJSES6 MODULE webpack 的打包机制webp…...

反复 Failed to connect to github.com port 443 after xxx ms

前提&#xff1a;使用了代理&#xff0c;浏览器能稳定访问github&#xff0c;但git clone一直超时 解决方案&#xff1a; 1. git config --global http.proxy http://127.0.0.1:1080 2. 代理设置端口1080 3. 1080可自定义 感谢来自这篇博客和评论区的提醒&#xff1a;解决…...

ARM裸机-11

1、安装交叉编译工具工具 1.1、windows中装软件的特点 windows中装软件使用安装包&#xff0c;安装包解压后有两种情况:一种是一个安装文件 (.exe/.msi)&#xff0c;双击进行安装&#xff0c;下一步直到安装完毕。安装完毕后会在桌面上生成快捷方式&#xff0c;我们平时使用快…...

centos7升级glibc

作者&#xff1a;吴业亮 博客&#xff1a;wuyeliang.blog.csdn.net 安装bison&#xff1a; yum install bison -y安装wget、bzip2、gcc、gcc-c和glibc-headers&#xff1a; yum -y install wget bzip2 gcc gcc-c glibc-headers安装make-4.2.1&#xff1a; wget http://ftp.…...

【OnnxRuntime】在linux下编译并安装C++版本的onnx-runtime

目录 安装C接口的onnx-runtime安装依赖项&#xff1a;下载源文件构建ONNX Runtime安装ONNX Runtime 安装C接口的onnx-runtime 安装依赖项&#xff1a; 安装CMake&#xff1a;可以通过包管理器&#xff08;如apt、yum等&#xff09;安装CMake。 安装C编译器&#xff1a;确保系…...

C#基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数的实现

本文实现基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数。 fftshift 函数将信号频谱的零频分量移动到数组中心, 本质是分别对调一三象限数据。 ifftshift完成相反的操作,本质是二四象限的数据块。 OpenCV中没有这两个函数如果使用需要自己实现。 实现代码如下: …...

【SpringBoot】笔记2

文章目录 45、web实验-抽取公共页面46、web实验-遍历数据与页面bug修改47、视图解析-【源码分析】-视图解析器与视图[暂时没看]48、拦截器-登录检查与静态资源放行49、拦截器-【源码分析】-拦截器的执行时机和原理50、文件上传-单文件与多文件上传的使用51、文件上传-【源码流程…...

Spring事务传播机制详细讲解

文章目录 一、事务传播机制1. REQUIRED&#xff1a;2. SUPPORTS&#xff1a;3. MANDATORY&#xff1a;4. REQUIRES_NEW&#xff1a;5. NOT_SUPPORTED&#xff1a;6. NEVER&#xff1a;7. NESTED&#xff1a; 二、事务传播机制分类1. 支持当前事务的传播机制&#xff1a;REQUIRE…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...