深度学习:常用优化器Optimizer简介
深度学习:常用优化器Optimizer简介
- 随机梯度下降SGD
- 带动量的随机梯度下降SGD-Momentum
- SGDW
- Adam
- AdamW
随机梯度下降SGD
梯度下降算法是使权重参数沿着整个训练集的梯度方向下降,但往往深度学习的训练集规模很大,计算整个训练集的梯度需要很大的计算量,为了减少计算量加速训练,在此基础上演化出随机梯度下降算法(SGD),沿着随机选取的小批量数据的梯度方向下降。
假设权重记作 w w w,学习率为 α \alpha α,随机选取小批量样本计算梯度 d w dw dw,模型在更新权重的公式如下:
w t + 1 = w t − α × d w t w_{t+1} = w_t - \alpha \times dw_t wt+1=wt−α×dwt
带动量的随机梯度下降SGD-Momentum
虽然随机梯度下降是一种很受欢迎的优化方法,但其学习过程有时比较慢,引入动量momentum旨在提高收敛速度和收敛精确度,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。
动量是深度学习训练中,一个用于更新模型参数的超参数,假设记作mu,则引入动量的随机梯度下降算法公式为:
v t = m u × v t − 1 − α t × d w t v_t = mu \times v_{t-1} - \alpha_t \times dw_t vt=mu×vt−1−αt×dwt
w t + 1 = w t + v t w_{t+1} = w_t + v_t wt+1=wt+vt
其中,v初始化为0,mu一般的取值为0.5、0.9、0.99等。
要是当前时刻的梯度与历史时刻梯度方向相似,这种趋势在当前时刻则会加强;要是不同,则当前时刻的梯度方向减弱。前者能够加速收敛,后者能够减小摆动,提高收敛精确度。
SGDW
weight decay(权值衰减)的使用既不是为了提高收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度防止过拟合,若weight decay很大,则复杂的模型损失函数的值也就大。
SGDW 即 SGD+ Weight decate。SGDW直接将正则项的梯度加入反向传播的公式中,而不是loss函数。
详细算法可参照:

Adam
Adam是一种自适应优化器,对超参数的选择较为鲁棒。SGD-Momentum在SGD基础上增加了一阶动量,AdaGrad和AdaDelta在SGD基础上增加了二阶动量。Adam则是把一阶动量和二阶动量都用起来了。
一阶动量:
m t = β 1 × m t − 1 + ( 1 − β 1 ) × d w t m_t = \beta_1 \times m_{t-1} + (1-\beta_1) \times dw_t mt=β1×mt−1+(1−β1)×dwt
二阶动量:
v t = β 2 × v t − 1 + ( 1 − β 2 ) × d 2 w t v_t = \beta_2 \times v_{t-1} + (1-\beta_2) \times d^2w_t vt=β2×vt−1+(1−β2)×d2wt
β 1 \beta_1 β1和 β 2 \beta_2 β2是Adam的两个超参数。
详细算法可参照Adam原始论文:

AdamW
AdamW在Adam的基础上发展而来的一种自适应优化器。AdamW 即 Adam + Weight decate ,效果与 Adam + L2正则化相同,但是计算效率更高,因为L2正则化需要在loss中加入正则项,之后再算梯度,最后在反向传播,而AdamW直接将正则项的梯度加入反向传播的公式中,省去了手动在loss中加正则项这一步。
详细算法可参照AdamW原始论文:

相关文章:
深度学习:常用优化器Optimizer简介
深度学习:常用优化器Optimizer简介 随机梯度下降SGD带动量的随机梯度下降SGD-MomentumSGDWAdamAdamW 随机梯度下降SGD 梯度下降算法是使权重参数沿着整个训练集的梯度方向下降,但往往深度学习的训练集规模很大,计算整个训练集的梯度需要很大…...
【算法心得】二维dp的状态转移狂练
LCS: LCS变式:使两个字符串变成一样的,删除的和最小 https://leetcode.cn/problems/minimum-ascii-delete-sum-for-two-strings/ 建表 m ∗ n m*n m∗n or ( m 1 ) ∗ ( n 1 ) (m1)*(n1) (m1)∗(n1)? 感觉 ( m 1 ) ∗ ( n …...
JMeter常用内置对象:vars、ctx、prev
在前文 Beanshell Sampler 与 Beanshell 断言 中,初步阐述了JMeter beanshell的使用,接下来归集整理了JMeter beanshell 中常用的内置对象及其使用。 注:示例使用JMeter版本为5.1 1. vars 如 API 文档 所言,这是定义变量的类&a…...
【C++从0到王者】第十四站:list基本使用及其介绍
文章目录 一、list基本介绍二、list基本使用1.尾插头插接口使用2.insert接口使用3.查找某个值所在的位置4.erase接口使用以及迭代器失效5.reverse6.sort7.merge8.unique9.remove11.splice 三、list基本使用完整代码 一、list基本介绍 如下所示,是库里面对list的基本…...
正则表达式、常用的正则
文章目录 正则表达式字符含意义RegExp函数RegExp属性RegExp对象方法RegExp构造函数的第二个参数 常用的正则例子只包含数字(包括正数、负数、零)只包含中英文数字及键盘上的特殊字符校验密码是否符合规则的正则校验http或者https端口号的正则只校验端口号…...
ST官方基于米尔STM32MP135开发板培训课程(一)
本文将以Myirtech的MYD-YF13X以及STM32MP135F-DK为例,讲解如何使用STM32CubeMX结合Developer package实现最小系统启动。 1.开发准备 1.1 Developer package准备 a.Developer package下载: https://www.st.com/en/embedded-software/stm32mp1dev.ht…...
组件(lvs,keeplive,orm,mysql,分布式事务)
lvs LVS 已经集成到Linux内核系统中,ipvsadm 是 LVS 的命令行管理工具。 目前有三种 IP 负载均衡技术( VS/NAT 网络地址转换 、VS/TUN IP 隧道技术实现虚拟服务器 和 VS/DR 直接路由); 八种调度算法:轮询 …...
《视觉SLAM十四讲》报错信息和解决方案
文章目录 ch4-Sophus编译报错ch5/imageBasics安装opencv4.x报错ch5/joinMap/CMakeLists.txt编译报错ch5/joinMap-pcl_viewer map.pcd报错 ch4-Sophus编译报错 报错信息: error: lvalue required as left operand of assignmentunit_complex_.real() 1.;^~ error:…...
golang 设置http请求代理
tinypoxy 搭建http代理服务可参考:tinyproxy搭建http代理_wangxiaoangg的博客-CSDN博客 需求背景: 项目需要访问一国外服务接口,地址被墙。购买香港ecs服务器,并在上面搭建http代理服务。 一 使用http和https代理 func main() {pr…...
我的会议(会议通知)
前言: 我们在实现了发布会议功能,我的会议功能的基础上,继续来实现会议通知的功能。 4.1实现的特色功能: 当有会议要参加时,通过查询会议通知可以知道会议的内容,以及当前会议状态(未读) 4.2思路…...
css实现水平居中
代码示例 <div class"box"><div class"box1"></div> </div>1.弹性布局:(推荐) display:flex; 这些要添加在父级的,是父级的属性 //父级添加display:flex; //父级添加jus…...
c刷题(一)
目录 1.输出100以内3的倍数 2.将3个数从大到小输出 3.打印100~200素数 方法一 方法二 4.显示printf的返回值 最大公约数 试除法 辗转相除法 九九乘法表 求十个数的最大值 1.输出100以内3的倍数 法一: int n 0; while (n*3 < 100){printf("%d &q…...
webpack
文章目录 webpack概念打包的场景为什么要打包在打包之外 - 翻译在打包之外 - 小动作 课程重点模块化利用立即执行函数来改变 作用域模块化的优点模块化方案的进化史AMD(成型比较早,应用不是很广泛)COMMONJSES6 MODULE webpack 的打包机制webp…...
反复 Failed to connect to github.com port 443 after xxx ms
前提:使用了代理,浏览器能稳定访问github,但git clone一直超时 解决方案: 1. git config --global http.proxy http://127.0.0.1:1080 2. 代理设置端口1080 3. 1080可自定义 感谢来自这篇博客和评论区的提醒:解决…...
ARM裸机-11
1、安装交叉编译工具工具 1.1、windows中装软件的特点 windows中装软件使用安装包,安装包解压后有两种情况:一种是一个安装文件 (.exe/.msi),双击进行安装,下一步直到安装完毕。安装完毕后会在桌面上生成快捷方式,我们平时使用快…...
centos7升级glibc
作者:吴业亮 博客:wuyeliang.blog.csdn.net 安装bison: yum install bison -y安装wget、bzip2、gcc、gcc-c和glibc-headers: yum -y install wget bzip2 gcc gcc-c glibc-headers安装make-4.2.1: wget http://ftp.…...
【OnnxRuntime】在linux下编译并安装C++版本的onnx-runtime
目录 安装C接口的onnx-runtime安装依赖项:下载源文件构建ONNX Runtime安装ONNX Runtime 安装C接口的onnx-runtime 安装依赖项: 安装CMake:可以通过包管理器(如apt、yum等)安装CMake。 安装C编译器:确保系…...
C#基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数的实现
本文实现基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数。 fftshift 函数将信号频谱的零频分量移动到数组中心, 本质是分别对调一三象限数据。 ifftshift完成相反的操作,本质是二四象限的数据块。 OpenCV中没有这两个函数如果使用需要自己实现。 实现代码如下: …...
【SpringBoot】笔记2
文章目录 45、web实验-抽取公共页面46、web实验-遍历数据与页面bug修改47、视图解析-【源码分析】-视图解析器与视图[暂时没看]48、拦截器-登录检查与静态资源放行49、拦截器-【源码分析】-拦截器的执行时机和原理50、文件上传-单文件与多文件上传的使用51、文件上传-【源码流程…...
Spring事务传播机制详细讲解
文章目录 一、事务传播机制1. REQUIRED:2. SUPPORTS:3. MANDATORY:4. REQUIRES_NEW:5. NOT_SUPPORTED:6. NEVER:7. NESTED: 二、事务传播机制分类1. 支持当前事务的传播机制:REQUIRE…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
