leetcode 912.排序数组
⭐️ 题目描述

🌟 leetcode链接:排序数组
思路: 此题如果使用冒泡插入选择这些时间复杂度 O ( N 2 ) O(N^2) O(N2) 的算法会超时,使用快排 + 优化也过不去,因为里面有一个测试用例全是 2 即使加了三数取中也会是 O ( N 2 ) O(N^2) O(N2) ,以下实现主要使用归并排序。如果需要其他排序的可以看我往期的排序详解✨ 七大经典比较排序算法
代码:
void mergeSort (int * nums , int begin , int end , int* temp) {// 区间不存在if (begin >= end) {return;}int midIndex = (begin + end) >> 1;mergeSort(nums , begin , midIndex , temp);mergeSort(nums , midIndex + 1 , end , temp);int leftBegin = begin;int leftEnd = midIndex;int rightBegin = midIndex + 1;int rightEnd = end;int i = begin;while (leftBegin <= leftEnd && rightBegin <= rightEnd) {if (nums[leftBegin] < nums[rightBegin]) {temp[i++] = nums[leftBegin++];} else {temp[i++] = nums[rightBegin++];}}while (leftBegin <= leftEnd) {temp[i++] = nums[leftBegin++];}while (rightBegin <= rightEnd) {temp[i++] = nums[rightBegin++];}// 拷贝memcpy(nums + begin , temp + begin , sizeof(int) * (end - begin + 1));
}int* sortArray(int* nums, int numsSize, int* returnSize){*returnSize = numsSize;// 直接归并排序秒杀int * temp = (int*)malloc(sizeof(int) * numsSize);mergeSort(nums , 0 , numsSize - 1 , temp);free(temp);return nums;
}
相关文章:
leetcode 912.排序数组
⭐️ 题目描述 🌟 leetcode链接:排序数组 思路: 此题如果使用冒泡插入选择这些时间复杂度 O ( N 2 ) O(N^2) O(N2) 的算法会超时,使用快排 优化也过不去,因为里面有一个测试用例全是 2 即使加了三数取中也会是 O (…...
利用MMPreTrain微调图像分类模型
前言 MMPreTrain是一款基于PyTorch的开源深度学习预工具箱,是OpenMMLab项目的成员之一MMPreTrain的主要特性有: 支持多元化的主干网络与预训练模型支持多种训练策略(有监督学习,无监督学习,多模态学习等)提…...
express学习笔记3 - 三大件
便于统一管理router,创建 router 文件夹,创建 router/index.js: const express require(express)// 注册路由 const router express.Router() router.get(/,function(req,res){res.send(让我们开始express之旅) }) /*** 集中处理404请求的…...
Java课题笔记~Maven基础
2、Maven 基础 2.1 Maven安装与配置 下载安装 配置:修改安装目录/conf/settings.xml 本地仓库:存放的是下载的jar包 中央仓库:要从哪个网站去下载jar包 - 阿里云的仓库 2.2 创建Maven项目...
三步问题(力扣)n种解法 JAVA
目录 题目:1、dfs:2、dfs 备忘录(剪枝):(1)神器 HashMap 备忘录:(2)数组 memo 备忘录: 3、动态规划:4、利用 static 的储存功能:&…...
flask---》登录认证装饰器/配置文件/路由系统
登录认证装饰器 # 0 装饰器的本质原理-# 类装饰器:1 装饰类的装饰器 2 类作为装饰器 # 1 装饰器使用位置,顺序 # 3 flask路由下加装饰器,一定要加endpoint-如果不指定endpoint,反向解析的名字都是函数名,不加装饰器…...
Jvm实际运行情况-JVM(十七)
上篇文章说jmap和jstat的命令,如何查看youngGc和FullGc耗时和次数。 Jmap-JVM(十六) Jvm实际运行情况 背景: 机器配置:2核4G JVM内存大小:2G 系统运行天数:7天 期间发生FULL GC次数和耗时…...
【BASH】回顾与知识点梳理(二)
【BASH】回顾与知识点梳理 二 二. Shell 的变量功能2.1 什么是变量?2.2 变量的取用与设定: echo, 变量设定规则: set/unset2.3 环境变量的功能用 set 观察所有变量 (含环境变量与自定义变量)export: 自定义变量转成环境变量那如何将环境变量转成自定义变…...
【分布式训练】Accelerate 多卡训练,单卡评测,进程卡住的解决办法
最近想把之前的一个模型的改成多卡训练的。我并不懂DDP,DP。一开始打算使用Transformers的Trainer,但是配置的过程踩了很多坑也没有弄成功。【我是自己写的评测方法,但是我找不到能让触发Trainer去用我的方法评测的路劲】,后来偶然…...
时间复杂度为O(nlogn)的两种排序算法
1.归并排序 归并排序的核心思想:如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。 归并排序使用的就是分治思想。分治&#x…...
java调用onnx模型,支持yolov5和yolov7
不点star不给解答问题 可直接运行主文件:ObjectDetection_1_25200_n.java 或者 ObjectDetection_n_7.java 都可以直接运行两个可以运行的主文件是为了支持不用网络结构的模型,即使是onnx模型,输出的结果参数也不一样,支持以下两种…...
DP-GAN损失
在前面我们看了生成器和判别器的组成。 生成器损失公式: 首先将fake image 和真实的 image输入到判别器中: 接着看第一个损失:参数分别为fake image经过判别器的输出mask,和真实的label进行损失计算。对应于: 其中l…...
自监督去噪:Noise2Void原理和调用(Tensorflow)
文章原文: https://arxiv.org/abs/1811.10980 N2V源代码: https://github.com/juglab/n2v 参考博客: https://zhuanlan.zhihu.com/p/445840211https://zhuanlan.zhihu.com/p/133961768https://zhuanlan.zhihu.com/p/563746026 文章目录 1. 方法原理1.1 Noise2Noise回…...
Mac 安装配置adb命令环境(详细步骤)
一、注意:前提要安装java环境。 因为android sdk里边开发的一些包都是依赖java语言的,所以,首先要确保已经配置了java环境。 二、在Mac下配置android adb命令环境,配置方式如下: 1、下载并安装IDE (andr…...
GDAL C++ API 学习之路 (2) GDALRasterBand篇 代码示例 翻译 自学
GDALRasterBand Class <gdal_priv.h> GDALRasterBand是GDAL中用于表示栅格数据集中一个波段的类。栅格数据集通常由多个波段组成,每个波段包含了特定的数据信息,例如高程、红、绿、蓝色等, 用于表示影像的不同特征。提供了许…...
springboot对静态资源的支持
1、spring boot默认静态路径支持 Spring Boot 默认将 / 所有访问映射到以下目录:** classpath:/static classpath:/public classpath:/resources classpath:/META-INF/resources也就是说什么也不用配置,通过浏览器可以直接访问这几个目录下的文件。 1…...
WPF实战学习笔记27-全局通知
新建消息事件 添加文件:Mytodo.Common.Events.MessageModel.cs using Prism.Events; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Diagnostics;namespace Mytod…...
openSUSE安装虚拟化 qemu kvm
1) 第一种:图形界面yast安装虚拟化 左下角开始菜单搜索yast 点一下就能安装,是不是很简单呢 2)第二种: 命令行安装 网上关于openSUSE安装qemu kvm的教程比较少,可以搜索centos7 安装qemu kvm的教程,然后…...
基于linux下的高并发服务器开发(第四章)- 多进程实现并发服务器(回射服务器)
1. socket // 套接字通信分两部分: - 服务器端:被动接受连接,一般不会主动发起连接 - 客户端:主动向服务器发起连接 2.字节序转换函数 当格式化的数据在两台使用不同字节序的主机之间直接传递时,接收端必然错误…...
【程序分析】符号执行
符号执行入门 参考:https://zhuanlan.zhihu.com/p/26927127 给定一个结果,求解对应的程序输入。 经典符号执行与动态符号执行 参考:https://p1kk.github.io/2021/04/04/others/%E7%AC%A6%E5%8F%B7%E6%89%A7%E8%A1%8C&%E6%B1%A1%E7%82…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
