二、搜索与图论6:Dijkstra 模板题+算法模板(Dijkstra求最短路 I, Dijkstra求最短路 II,1003 Emergency)
文章目录
- 算法模板
- Dijkstra题目代码模板
- 朴素dijkstra算法
- 堆优化版dijkstra
- 树与图的存储
- (1) 邻接矩阵:
- (2) 邻接表:
- 关于e[],ne[],h[]的理解
- 关于堆的原理与操作
- 模板题
- Dijkstra求最短路 I
- 原题链接
- 题目
- 思路
- 题解
- Dijkstra求最短路 II
- 原题链接
- 题目
- 思路
- 题解
- 1003 Emergency
- 原题链接
- 题目
- 思路
- 题解
算法模板
Dijkstra题目代码模板
朴素dijkstra算法
对应模板题:Dijkstra求最短路 I
时间复杂是 O(n^2+m):n 表示点数,m 表示边数
int g[N][N]; // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;for (int i = 0; i < n - 1; i ++ ){int t = -1; // 在还未确定最短路的点中,寻找距离最小的点for (int j = 1; j <= n; j ++ )if (!st[j] && (t == -1 || dist[t] > dist[j]))t = j;// 用t更新其他点的距离for (int j = 1; j <= n; j ++ )dist[j] = min(dist[j], dist[t] + g[t][j]);st[t] = true;}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}
堆优化版dijkstra
对应模板题:Dijkstra求最短路 II
时间复杂度 O(mlogn):n 表示点数,m 表示边数
typedef pair<int, int> PII;int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;priority_queue<PII, vector<PII>, greater<PII>> heap;heap.push({0, 1}); // first存储距离,second存储节点编号while (heap.size()){auto t = heap.top();heap.pop();int ver = t.second, distance = t.first;if (st[ver]) continue;st[ver] = true;for (int i = h[ver]; i != -1; i = ne[i]){int j = e[i];if (dist[j] > distance + w[i]){dist[j] = distance + w[i];heap.push({dist[j], j});}}}if (dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}
树与图的存储
树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。
(1) 邻接矩阵:
g[a][b] 存储边a->b
(2) 邻接表:
https://www.acwing.com/video/21/
(1:20:00左右)
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;// 添加一条边a->b
void add(int a, int b)
{e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}int main(){...// 初始化idx = 0;memset(h, -1, sizeof h);...
}
有权重时模板:
int h[N],w[N],e[N],ne[N],idx; void add(int a,int b,int c){e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}
关于e[],ne[],h[]的理解
h[N] : 表示 第 i 个节点的 第一条边的 idx
ne[M] : 表示 与 第 idx 条边 同起点 的 下一条边 的 idx
e[M] : 表示 第idx 条边的 终点
N : 节点数量
M:边的数量
i : 节点的下标索引
idx : 边的下标索引
变量初始化定义:
int h[N], e[M], ne[M], idx;
当我们加入一条边的时候:
void add(int a,int b){e[idx] = b; // 记录 加入的边 的终点节点ne[idx] = h[a]; // h[a] 表示 节点 a 为起点的第一条边的下标,ne[idx] = h[a] 表示把 h[a] 这条边接在了 idx 这条边的后面,其实也就是把 a 节点的整条链表 接在了 idx 这条边 后面;目的就是为了下一步 把 idx 这条边 当成 a 节点的单链表的 第一条边,完成把最新的一条边插入到 链表头的操作;h[a] = idx++; // a节点开头的第一条边置为当前边,idx移动到下一条边
}
要注意的是邻接表插入新节点时使用的是“头插”,如图中节点2:当插入2 1时此时为2—>1, 而后插入2 4后,此时为 2—> 4 —> 1.
关于堆的原理与操作
二、数据结构10:堆 模板题+算法模板(堆排序,模拟堆)
模板题
Dijkstra求最短路 I
原题链接
https://www.acwing.com/problem/content/851/
题目
给定一个 n
个点 m
条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1
号点到 n
号点的最短距离,如果无法从 1
号点走到 n
号点,则输出 −1
。
输入格式
第一行包含整数 n
和 m
。
接下来 m
行每行包含三个整数 x,y,z
,表示存在一条从点 x
到点 y
的有向边,边长为 z
。
输出格式
输出一个整数,表示 1
号点到 n
号点的最短距离。
如果路径不存在,则输出 −1
。
数据范围
1≤n≤500
,
1≤m≤105
,
图中涉及边长均不超过10000。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
思路
题解
#include <iostream>
#include <algorithm>
#include <bits/stdc++.h>
using namespace std;
const int N = 510;
const int M = 1e5 + 10;
int dist[N]; // 存各点与1号点的最短距离
bool st[N]; // 存各点是否已被 处理为最短距离点 判断 (当前已确定最短距离的点)
int g[N][N];
int n,m,t;int dijkstra(){memset(dist,0x3f,sizeof dist);dist[1] = 0;for(int i = 0;i<n;i++){t = -1; // t: 不在 当前已确定最短距离的点 中的距离最短的点 初始化为-1 for(int j = 1;j<=n;j++){if(!st[j] && (t == -1 || dist[t] > dist[j])){t = j;}}st[t] = true;for(int j=1;j<=n;j++){dist[j] = min(dist[j],dist[t] + g[t][j]); //用(1到t+t到j)的长度与(1到j)的长度进行对比更新 }}if(dist[n] == 0x3f3f3f3f) return -1;else return dist[n];
}
int main(){cin>>n>>m;memset(g,0x3f,sizeof g);for(int i=0;i<m;i++){int x,y,z;cin>>x>>y>>z;g[x][y] = min(g[x][y],z);} int res = dijkstra();printf("%d",res);return 0;}
Dijkstra求最短路 II
原题链接
https://www.acwing.com/problem/content/852/
题目
给定一个 n
个点 m
条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1
号点到 n
号点的最短距离,如果无法从 1
号点走到 n
号点,则输出 −1
。
输入格式
第一行包含整数 n
和 m
。
接下来 m
行每行包含三个整数 x,y,z
,表示存在一条从点 x
到点 y
的有向边,边长为 z
。
输出格式
输出一个整数,表示 1
号点到 n
号点的最短距离。
如果路径不存在,则输出 −1
。
数据范围
1≤n,m≤1.5×105
,
图中涉及边长均不小于 0
,且不超过 10000
。
数据保证:如果最短路存在,则最短路的长度不超过 109
。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
思路
使用堆优化,选择用stl中的priority_queue进行操作
关于st[N]数组 处理冗余部分
https://www.acwing.com/solution/content/167860/
题解
#include <iostream>
#include <algorithm>
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
const int M = 2e5 + 10;
typedef pair<int,int> PII;
int dist[N]; // 存各点与1号点的最短距离
bool st[N]; // 存各点是否已被 处理为最短距离点 判断 (当前已确定最短距离的点)
//int g[N][N];
//堆优化中,由于为稀疏图,因此使用邻接表进行存储
int h[N],w[N],e[N],ne[N],idx; int n,m,t;//邻接表插入处理
void add(int a,int b,int c){e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}int dijkstra(){memset(dist,0x3f,sizeof dist);dist[1] = 0;// 堆优化版dijkstrapriority_queue<PII,vector<PII>,greater<PII>> heap;heap.push({0,1}); // {距离,编号}编号为1的点距离为0,表示1到1的距离为0 while(heap.size()){auto t = heap.top();heap.pop();int ver = t.second, distance = t.first; // distance :结点1到结点ver的距离if(st[ver]) continue; // 冗余的话跳过st[ver] = true;for(int i=h[ver]; i!=-1; i=ne[i]){ // 邻接表遍历,从h[ver]开始遍历可达的所有结点int j = e[i];// w[i]:结点ver到结点j的距离if(dist[j]>distance + w[i]){ // 1--->i的距离 和 1--->ver--->i的距离相比dist[j] = distance + w[i]; heap.push({dist[j],j});}} }if(dist[n] == 0x3f3f3f3f) return -1;else return dist[n];
}
int main(){cin>>n>>m;
// memset(g,0x3f,sizeof g);memset(h,-1,sizeof h);;for(int i=0;i<m;i++){int x,y,z;cin>>x>>y>>z;add(x,y,z);} int res = dijkstra();printf("%d",res);return 0;}
1003 Emergency
原题链接
原题链接
题目
题目大意:n个城市m条路,每个城市有救援小组,所有的边的边权已知。给定起点和终点,求从起点到终点的最短路径条数以及最短路径上的救援小组数目之和。如果有多条就输出点权(城市救援小组数目)最大的那个
思路
用一遍Dijkstra算法,救援小组个数相当于点权,用Dijkstra求边权最小的最短路径的条数,以及这些最短路径中点权最大的值
dis[i]表示从出发点到i结点最短路径的路径长度,
num[i]表示从出发点到i结点最短路径的条数,
w[i]表示从出发点到i点救援队的数目之和
当判定dis[u] + e[u][v] < dis[v]的时候,
不仅仅要更新dis[v],还要更新num[v] = num[u], w[v] = weight[v] + w[u];
如果dis[u] + e[u][v] == dis[v],还要更新num[v] += num[u],而且判断一下是否权重w[v]更小,如果更小了就更新w[v] = weight[v] + w[u];
题解
基于上述朴素版dijkstra进行改进,
#include <bits/stdc++.h>
using namespace std;
//题目大意:n个城市m条路,每个城市有救援小组,所有的边的边权已知。给定起点和终点,求从起点到终点的最短路径条数以及最短路径上的救援小组数目之和。如果有多条就输出点权(城市救援小组数目)最大的那个~
//
//分析:用一遍Dijkstra算法~救援小组个数相当于点权,用Dijkstra求边权最小的最短路径的条数,以及这些最短路径中点权最大的值~dis[i]表示从出发点到i结点最短路径的路径长度,num[i]表示从出发点到i结点最短路径的条数,w[i]表示从出发点到i点救援队的数目之和~当判定dis[u] + e[u][v] < dis[v]的时候,不仅仅要更新dis[v],还要更新num[v] = num[u], w[v] = weight[v] + w[u]; 如果dis[u] + e[u][v] == dis[v],还要更新num[v] += num[u],而且判断一下是否权重w[v]更小,如果更小了就更新w[v] = weight[v] + w[u]; const int N = 510;
int g[N][N];
int c1,c2;
int dist[N]; //dist[i]表示从出发点到i结点最短路径的路径长度
int weight[N]; //每个城市救援队数量
int w[N]; //w[i]表示从出发点到i点救援队的数目之和
bool st[N];
int num[N]; //num[i]表示从出发点到i结点最短路径的条数int n,m;void dij(){w[c1] = weight[c1];memset(dist,0x3f,sizeof dist);dist[c1] = 0;num[c1] = 1;int t;for(int i=0;i<n;i++){t = -1;for(int j=0;j<n;j++){if(!st[j] && (t==-1 || dist[t] >dist[j]) ){t = j;}}st[t] = true;for(int j=0;j<n;j++){
// dist[j] = min(dist[j],dist[t] + g[t][j]);if(dist[j]>dist[t]+g[t][j]){ //当判定dis[u] + e[u][v] < dis[v]的时候,不仅仅要更新dis[v],还要更新num[v] = num[u], w[v] = weight[v] + w[u]; dist[j] = dist[t]+g[t][j];num[j] = num[t];w[j] = w[t] + weight[j];
// cout<<t<<" "<<w[t]<<endl;
// w[j]+=weight[t];}else if(dist[j]==dist[t]+g[t][j]){ //如果dis[u] + e[u][v] == dis[v],还要更新num[v] += num[u],而且判断一下是否权重w[v]更小,如果更小了就更新w[v] = weight[v] + w[u]; num[j] = num[t]+num[j];if(w[t]+weight[j] > w[j]){w[j] = w[t] + weight[j];}} }}// return w[c2];
}
int main(){cin>>n>>m>>c1>>c2;for(int i=0;i<n;i++){int t;cin>>t;weight[i] = t;}memset(g,0x3f,sizeof g); // 赋值无穷大 for(int i=0;i<m;i++){int x,y,z;cin>>x>>y>>z;g[x][y] = g[y][x] = z; // 无向图!所以存双向信息 }dij();cout<<num[c2]<<" "<<w[c2];
}
参考链接:1003. Emergency (25)-PAT甲级真题(Dijkstra算法)
相关文章:

二、搜索与图论6:Dijkstra 模板题+算法模板(Dijkstra求最短路 I, Dijkstra求最短路 II,1003 Emergency)
文章目录 算法模板Dijkstra题目代码模板朴素dijkstra算法堆优化版dijkstra 树与图的存储(1) 邻接矩阵:(2) 邻接表:关于e[],ne[],h[]的理解 关于堆的原理与操作 模板题Dijkstra求最短路 I原题链接题目思路题解 Dijkstra求最短路 II原题链接题目思路题解 1…...

ROS2学习(四)进程,线程与节点的关系
节点与节点执行器 节点,英文是node,在ROS2中,节点是一个抽象的实体,它可以代表某种或某类特定功能的抽象集合体,它可以存在于进程中,也可以存在于线程中。所有ROS2的基础功能最基础的载体是节点,所有的通信…...

【物联网】DMA传输原理与实现详解(超详细)
DMA(Direct Memory Access,直接内存访问)是一种计算机数据传输方式,允许外围设备直接访问系统内存,而无需CPU的干预。 文章目录 Part 1: DMA的工作原理配置阶段:数据传输阶段: Part 2: DMA数据…...

Java类集框架(二)
目录 1.Map(常用子类 HashMap,LinkedHashMap,HashTable,TreeMap) 2.Map的输出(Map.Entry,iterator,foreach) 3.数据结构 - 栈(Stack) 4.数据结构 - 队列(Q…...

爬虫008_流程控制语句_if_if else_elif_for---python工作笔记026
然后我们再来看一下这里的,判断,可以看到 再看一个判断,这里的布尔类型 第二行有4个空格,python的格式 注意这里,输入的age是字符串,需要转一下才行 int可以写到int(intput("阿斯顿法师打发地方")) 这样也可以...

【随笔】五周年创作纪念日
今天收到了 CSDN 的创作五周年提示,正好前几天(7.31)我也成功申请了 CSDN 博客专家,趁这个机会分享一下这几年写博客的感受吧 机缘 关注我比较久的读者应该知道我是从学传统工科半路出家搞计算机的,这里的经历还是比…...

7_分类算法—逻辑回归
文章目录 逻辑回归:1 Logistic回归(二分类问题)1.1 sigmoid函数1.2 Logistic回归及似然函数(求解)1.3 θ参数求解1.4 Logistic回归损失函数1.5 LogisticRegression总结 2 Softmax回归(多分类问题࿰…...

【计算机网络】应用层协议 -- DNS协议
文章目录 1. DNS背景2. 域名简介3. 域名解析过程4. 使用dig查看DNS过程 1. DNS背景 DNS(Domain Name System,域名系统)协议,是一个用来将域名转化为IP地址的应用层协议。 TCP/IP当中通过IP地址和端口号的方式,来确定…...
ES6 - 数组新增的一些常用方法
文章目录 1,Array.from()2,Array.of()3,find(),findIndex(),findLast()和findLastIndex()4,Array.fill()5,keys(),values() 和 entries()6,Array.includes()7,…...

【BEV感知】3-BEV开源数据集
3-BEV开源数据集 1 KITTI1.1 KITTI数据怎么采集?1.2 KITTI数据规模有多大?1.3 KITTI标注了哪些目标?1.4 转换矩阵1.5 标签文件 2 nuScenes2.1 nuScenes Vs KITTI2.2 标注文件 1 KITTI KITTI 1.1 KITTI数据怎么采集? 通过车载相机、激光雷达等传感器采集。 只提供了相机正…...

Kafka-Broker工作流程
kafka集群在启动时,会将每个broker节点注册到zookeeper中,每个broker节点都有一个controller,哪个controller先在zookeeper中注册,哪个controller就负责监听brokers节点变化,当有分区的leader挂掉时,contro…...
第八篇-Tesla P40+ChatGLM2+LoRA
部署环境 系统:CentOS-7CPU: 14C28T显卡:Tesla P40 24G驱动: 515CUDA: 11.7cuDNN: 8.9.2.26目的 验证P40部署可行性,只做验证学习lora方式微调创建环境 conda create --name glm-tuning python3.10 conda activate glm-tuning克隆项目 git clone http…...

调用feign返回错误的数据
bug描述: 在一个请求方法中会调用到feign去获取其他的数据。 List<Demo> list aaaFeignApi.getData(personSelectGetParam);在调用的时候,打断点到feign的地方,数据是存在的,并且有15条。但是返回到上面代码的时候数据就…...

【Spring】(二)从零开始的 Spring 项目搭建与使用
文章目录 前言一、Spring 项目的创建1.1 创建 Maven 项目1.2 添加 Spring 框架支持1.3 添加启动类 二、储存 Bean 对象2.1 创建 Bean2.1 将 Bean 注册到 Spring 容器 三、获取并使用 Bean 对象3.1 获取Spring 上下文3.2 ApplicationContext 和 BeanFactory 的区别3.3 获取指定的…...

redis五种数据类型介绍
、string(字符串) 它师最基本的类型,可以理解为Memcached一模一样的类型,一个key对应一个value。 注意:一个键最大能存储 512MB。 特性:可以包含任何数据,比如jpg图片或者序列化的对象,一个键最大能存储512…...

【JavaEE】Spring Boot - 项目的创建和使用
【JavaEE】Spring Boot 开发要点总结(1) 文章目录 【JavaEE】Spring Boot 开发要点总结(1)1. Spring Boot 的优点2. Spring Boot 项目创建2.1 下载安装插件2.2 创建项目过程2.3 加载项目2.4 启动项目2.5 删除一些没用的文件 3. Sp…...
Git reset、revert用法
reset reset是删除之前的提交记录,所有的提交点都会被清除,我们看下执行前后的git log区别 D:\workspace\android>git log commit 87c1277a57544c53c603b04110e3dde100da8f57 (HEAD -> develop_main) Author: test <test.com> Date: Wed…...

Redis-1
Redis 理论部分 redis 速度快的原因 1、纯内存操作 2、单线程操作,避免了频繁的上下文切换和资源争用问题,多线程需要占用更多的 CPU 资源 3、采用了非阻塞 I/O 多路复用机制 4、提供了非常高效的数据结构,例如双向链表、压缩页表和跳跃…...

【Linux】Linux服务器连接百度网盘:实现上传下载
【Linux】Linux服务器连接百度网盘:实现上传下载 文章目录 【Linux】Linux服务器连接百度网盘:实现上传下载1. 前言2. 具体过程2.1 pip 安装所需包2.2 认证(第一次连接需要认证)2.3 下载所需文件或者目录2.4 其他指令使用2.5 注意…...

ADC模拟看门狗
如果被ADC转换的模拟电压低于低阀值或高于高阀值,AWD模拟看门狗状态位被设置。阀值位 于ADC_HTR和ADC_LTR寄存器的最低12个有效位中。通过设置ADC_CR1寄存器的AWDIE位 以允许产生相应中断。通过以下函数可以进行配置 void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...