当前位置: 首页 > news >正文

leetcode每日一练-第278题-第一个错误的版本

 

一、思路

二分查找——因为它可以快速地将版本范围缩小一半,从而更快地找到第一个坏版本。

二、解题方法

维护一个左边界 left 和一个右边界 right,在每一步循环中,我们计算中间版本 mid,然后检查它是否是坏版本。如果是坏版本,说明第一个坏版本在 mid 或者它之前,我们将 right 更新为 mid。如果不是坏版本,说明第一个坏版本在 mid 之后,我们将 left 更新为 mid + 1。最终,当 leftright 相等时,就找到了第一个坏版本。

三、code

// The API isBadVersion is defined for you.
// bool isBadVersion(int version);class Solution {
public:int firstBadVersion(int n) {int left=1;//设定一个左边界 left 和一个右边界 rightint right=n;while(left<right){int mid=left+(right-left)/2;if(isBadVersion(mid)){right=mid;}else{left=mid+1;}}return left;//也可以是right。当 left 和 right 相等时,就找到了第一个坏版本。}
};

===================================================================== 

 ①

二分查找(Binary Search)是一种高效的搜索算法,适用于已排序的数据集。它的核心思想是将待查找的数据与数据集的中间元素进行比较,从而排除一半的数据,然后继续在剩余的一半中继续查找,以此类推,直到找到目标元素或者确定目标元素不存在。

二分查找的步骤如下:

  1. 确定查找范围的起始点和终点,通常是整个数据集的起始和终止位置。

  2. 计算中间元素的位置。这可以通过 (start + end) / 2 来获得,也可以使用 (start + end) >> 1 来获得,这两种方法在整数运算中可以避免溢出问题。

  3. 比较中间元素与目标元素的大小关系,如果相等,则找到了目标元素,算法结束。

  4. 如果中间元素比目标元素大,那么目标元素应该在左半部分,将终点位置更新为中间位置减一。

  5. 如果中间元素比目标元素小,那么目标元素应该在右半部分,将起始位置更新为中间位置加一。

  6. 重复步骤2到步骤5,直到起始位置大于终点位置,表示查找范围为空,目标元素不存在。

二分查找是一种时间复杂度为 O(log n) 的算法,因此在处理大规模数据时非常高效。然而,它要求数据集是已排序的,否则无法正确进行查找。

错误:使用线性搜索来解决这个问题,但是可能因为版本数量很多而导致超时。

// The API isBadVersion is defined for you.
// bool isBadVersion(int version);

class Solution {
public:
    int firstBadVersion(int n) {
        for (int i = 1; i <= n; ++i) {
            if (isBadVersion(i) == true) {
                return i;
            }
        }
        return -1; // 如果没有找到坏版本,可以根据题目要求返回一个特定值
    }
};
 

相关文章:

leetcode每日一练-第278题-第一个错误的版本

一、思路 二分查找——因为它可以快速地将版本范围缩小一半&#xff0c;从而更快地找到第一个坏版本。 二、解题方法 维护一个左边界 left 和一个右边界 right&#xff0c;在每一步循环中&#xff0c;我们计算中间版本 mid&#xff0c;然后检查它是否是坏版本。如果是坏版本…...

最小生成树笔记(Prim算法Kruskal算法)

1.最小生成树 最小生成树&#xff08;Minimum Spanning Tree&#xff0c;简称MST&#xff09;是指&#xff1a;在一个连通无向图中&#xff0c;找到一个包含所有顶点的树&#xff0c;且该树的所有边的权重之和最小。 换句话说&#xff0c;最小生成树是原图中的一个子图&#…...

4、数据清洗

4、数据清洗 前面我们处理的数据实际上都是已经被处理好的规整数据&#xff0c;但是在大数据整个生产过程中&#xff0c;需要先对数据进行数据清洗&#xff0c;将杂乱无章的数据整理为符合后面处理要求的规整数据。 数据去重 1.删除重复数据groupby().count()&#xff1a;可以…...

Python-OpenCV 图像的基础操作

图像的基础操作 获取图像的像素值并修改获取图像的属性信息图像的ROI区域图像通道的拆分及合并图像扩边填充图像上的算术运算图像的加法图像的混合图像的位运算 获取图像的像素值并修改 首先读入一副图像&#xff1a; import numpy as np import cv2# 1.获取并修改像素值 # 读…...

test111

step3&#xff1a;多线程task 首先&#xff0c;实现两个UserService和AsyncUserService两个服务接口&#xff1a; package com.example.demospringboot.service;public interface UserService {void checkUserStatus(); }package com.example.demospringboot.service.impl;im…...

17. Spring 事务

目录 1. 事务定义 2. MySQL 中的事务使用 3. 没有事务时的插入 4. Spring 编程式事务 5. Spring 声明式事务 5.1 Transactional 作用范围 5.2 Transactional 参数说明 5.3 Transactional 工作原理 1. 事务定义 将⼀组操作封装成一个执行单元&#xff08;封装到一起…...

【C# 基础精讲】运算符和表达式

在C#编程中&#xff0c;运算符和表达式是构建复杂逻辑的关键元素。运算符用于执行各种数学、逻辑和其他操作&#xff0c;而表达式则由运算符、变量、常量和函数组成&#xff0c;用于生成计算结果。本文将详细介绍C#中常见的运算符和表达式的概念&#xff0c;以及它们在程序中的…...

【搜索】DFS连通性模型

算法提高课笔记 目录 迷宫题意思路代码 红与黑题意思路代码 DFS 的搜索分为两大部分&#xff1a; 内部搜索&#xff1a;一个图中从一个点搜到另一个点外部搜索&#xff1a;从一张图&#xff08;状态&#xff09;搜到另一张图&#xff08;状态&#xff09; 在第一个部分里是图…...

项目优化后续 ,手撸一个精简版VUE项目框架!

之前说过项目之前用的vben框架&#xff0c;在优化完性能后打包效果由原来的纯代码96M变成了56M&#xff0c;后续来啦&#xff0c;通过更换框架&#xff0c;代码压缩到了36M撒花~ 现在就来详细说说是怎么手撸一个框架的&#xff01; 方案&#xff1a; 搭建一套 vite vue3 a…...

【深度学习笔记】TensorFlow 基础

在 TensorFlow 2.0 及之后的版本中&#xff0c;默认采用 Eager Execution 的方式&#xff0c;不再使用 1.0 版本的 Session 创建会话。Eager Execution 使用更自然地方式组织代码&#xff0c;无需构建计算图&#xff0c;可以立即进行数学计算&#xff0c;简化了代码调试的过程。…...

面试题-springcloud中的负载均衡是如何实现的?

一句话导读 Springcloud中的负载均衡是通过Ribbon实现的&#xff0c;自带有很多负载均衡策略&#xff0c;如&#xff1a;包括轮询&#xff08;Round Robin&#xff09;、随机&#xff08;Random&#xff09;、加权轮询&#xff08;Weighted Round Robin&#xff09;、加权随机&…...

flink的ProcessWindowFunction函数的三种状态

背景 在处理窗口函数时&#xff0c;ProcessWindowFunction处理函数可以定义三个状态&#xff1a; 富函数getRuntimeContext.getState, 每个key每个窗口的状态context.windowState(),每个key的状态context.globalState&#xff0c;那么这几个状态之间有什么关系呢&#xff1f; …...

day50-springboot+ajax分页

分页依赖&#xff1a; <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pagehelper-spring-boot-starter</artifactId> <version>1.0.0</version> </dependency> 配置&#xff1a; …...

Win7 专业版Windows time w32time服务电脑重启后老是已停止

环境&#xff1a; Win7 专业版 问题描述&#xff1a; Win7 专业版Windows time w32time服务电脑重启后老是已停止 解决方案&#xff1a; 1.检查启动Remote Procedure Call (RPC)、Remote Procedure Call (RPC) Locator&#xff0c;DCOM Server Process Launcher这三个服务是…...

全网最强,接口自动化测试-token登录关联实战总结(超详细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 在PC端登录公司的…...

OLAP ModelKit Crack,ADO.NET和IList

OLAP ModelKit Crack,ADO.NET和IList OLAP ModelKit是一个多功能的.NET OLAP组件&#xff0c;用C#编写&#xff0c;只包含100%托管代码。它具有XP主题的外观&#xff0c;并能够使用任何.NET数据源(ADO.NET和IList)。借助任何第三方组件(尤其是图表组件)呈现数据的能力扩展了产品…...

4 三组例子,用OpenCV玩转图像-AI-python

读取&#xff0c;缩放&#xff0c;旋转&#xff0c;写入图像 首先导入包&#xff0c;为了显示导入matplotlib/为了在matplotlib显示 导入CV2/查看版本 导入图片/查看图片类型 图片数组 数组大小 对于opencv通道顺序蓝色B、绿色G、红色R matplotlib通道顺序为 红色R、绿色G、蓝…...

计算机网络-三种交换方式

计算机网络-三种交换方式 电路交换(Circuit Switching) 电话交换机接通电话线的方式称为电路交换从通信资源分配的角度来看&#xff0c;交换(Switching)就是按照某种方式动态的分配传输线路的资源 电话交换机 为了解决电话之间通信两两之间连线过多&#xff0c;所以产生了电话…...

03 制作Ubuntu启动盘

1 软碟通 我是用软碟通制作启动盘。安装软碟通时一定要把虚拟光驱给勾选上&#xff0c;其余两个可以看你心情。 2 镜像文件 我使用清华镜像网站找到的Ubuntu镜像文件。 Index of /ubuntu-releases/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 请自己选择镜像…...

【JavaSE】String类中常用的字符串方法(超全)

目录 1.求字符串的长度 2.判断字符串是否为空 3.String对象的比较 3.1 判断字符串是否相同 3.2 比较字符串大小 3.3 忽略大小写比较 4.字符串查找 5.转化 5.1 数值和字符串转化 5.1.1 数字转字符串 valueof 5.1.2 valueOf的其他用法 5.1.3 字符串转数字 5.2 大小写转…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...