leetcode每日一练-第278题-第一个错误的版本
一、思路
二分查找——因为它可以快速地将版本范围缩小一半,从而更快地找到第一个坏版本。
二、解题方法
维护一个左边界 left
和一个右边界 right
,在每一步循环中,我们计算中间版本 mid
,然后检查它是否是坏版本。如果是坏版本,说明第一个坏版本在 mid
或者它之前,我们将 right
更新为 mid
。如果不是坏版本,说明第一个坏版本在 mid
之后,我们将 left
更新为 mid + 1
。最终,当 left
和 right
相等时,就找到了第一个坏版本。
三、code
// The API isBadVersion is defined for you.
// bool isBadVersion(int version);class Solution {
public:int firstBadVersion(int n) {int left=1;//设定一个左边界 left 和一个右边界 rightint right=n;while(left<right){int mid=left+(right-left)/2;if(isBadVersion(mid)){right=mid;}else{left=mid+1;}}return left;//也可以是right。当 left 和 right 相等时,就找到了第一个坏版本。}
};
=====================================================================
①
二分查找(Binary Search)是一种高效的搜索算法,适用于已排序的数据集。它的核心思想是将待查找的数据与数据集的中间元素进行比较,从而排除一半的数据,然后继续在剩余的一半中继续查找,以此类推,直到找到目标元素或者确定目标元素不存在。
二分查找的步骤如下:
-
确定查找范围的起始点和终点,通常是整个数据集的起始和终止位置。
-
计算中间元素的位置。这可以通过
(start + end) / 2
来获得,也可以使用(start + end) >> 1
来获得,这两种方法在整数运算中可以避免溢出问题。 -
比较中间元素与目标元素的大小关系,如果相等,则找到了目标元素,算法结束。
-
如果中间元素比目标元素大,那么目标元素应该在左半部分,将终点位置更新为中间位置减一。
-
如果中间元素比目标元素小,那么目标元素应该在右半部分,将起始位置更新为中间位置加一。
-
重复步骤2到步骤5,直到起始位置大于终点位置,表示查找范围为空,目标元素不存在。
二分查找是一种时间复杂度为 O(log n) 的算法,因此在处理大规模数据时非常高效。然而,它要求数据集是已排序的,否则无法正确进行查找。
错误:使用线性搜索来解决这个问题,但是可能因为版本数量很多而导致超时。
// The API isBadVersion is defined for you.
// bool isBadVersion(int version);
class Solution {
public:
int firstBadVersion(int n) {
for (int i = 1; i <= n; ++i) {
if (isBadVersion(i) == true) {
return i;
}
}
return -1; // 如果没有找到坏版本,可以根据题目要求返回一个特定值
}
};
相关文章:

leetcode每日一练-第278题-第一个错误的版本
一、思路 二分查找——因为它可以快速地将版本范围缩小一半,从而更快地找到第一个坏版本。 二、解题方法 维护一个左边界 left 和一个右边界 right,在每一步循环中,我们计算中间版本 mid,然后检查它是否是坏版本。如果是坏版本…...
最小生成树笔记(Prim算法Kruskal算法)
1.最小生成树 最小生成树(Minimum Spanning Tree,简称MST)是指:在一个连通无向图中,找到一个包含所有顶点的树,且该树的所有边的权重之和最小。 换句话说,最小生成树是原图中的一个子图&#…...
4、数据清洗
4、数据清洗 前面我们处理的数据实际上都是已经被处理好的规整数据,但是在大数据整个生产过程中,需要先对数据进行数据清洗,将杂乱无章的数据整理为符合后面处理要求的规整数据。 数据去重 1.删除重复数据groupby().count():可以…...

Python-OpenCV 图像的基础操作
图像的基础操作 获取图像的像素值并修改获取图像的属性信息图像的ROI区域图像通道的拆分及合并图像扩边填充图像上的算术运算图像的加法图像的混合图像的位运算 获取图像的像素值并修改 首先读入一副图像: import numpy as np import cv2# 1.获取并修改像素值 # 读…...
test111
step3:多线程task 首先,实现两个UserService和AsyncUserService两个服务接口: package com.example.demospringboot.service;public interface UserService {void checkUserStatus(); }package com.example.demospringboot.service.impl;im…...

17. Spring 事务
目录 1. 事务定义 2. MySQL 中的事务使用 3. 没有事务时的插入 4. Spring 编程式事务 5. Spring 声明式事务 5.1 Transactional 作用范围 5.2 Transactional 参数说明 5.3 Transactional 工作原理 1. 事务定义 将⼀组操作封装成一个执行单元(封装到一起…...

【C# 基础精讲】运算符和表达式
在C#编程中,运算符和表达式是构建复杂逻辑的关键元素。运算符用于执行各种数学、逻辑和其他操作,而表达式则由运算符、变量、常量和函数组成,用于生成计算结果。本文将详细介绍C#中常见的运算符和表达式的概念,以及它们在程序中的…...
【搜索】DFS连通性模型
算法提高课笔记 目录 迷宫题意思路代码 红与黑题意思路代码 DFS 的搜索分为两大部分: 内部搜索:一个图中从一个点搜到另一个点外部搜索:从一张图(状态)搜到另一张图(状态) 在第一个部分里是图…...

项目优化后续 ,手撸一个精简版VUE项目框架!
之前说过项目之前用的vben框架,在优化完性能后打包效果由原来的纯代码96M变成了56M,后续来啦,通过更换框架,代码压缩到了36M撒花~ 现在就来详细说说是怎么手撸一个框架的! 方案: 搭建一套 vite vue3 a…...

【深度学习笔记】TensorFlow 基础
在 TensorFlow 2.0 及之后的版本中,默认采用 Eager Execution 的方式,不再使用 1.0 版本的 Session 创建会话。Eager Execution 使用更自然地方式组织代码,无需构建计算图,可以立即进行数学计算,简化了代码调试的过程。…...
面试题-springcloud中的负载均衡是如何实现的?
一句话导读 Springcloud中的负载均衡是通过Ribbon实现的,自带有很多负载均衡策略,如:包括轮询(Round Robin)、随机(Random)、加权轮询(Weighted Round Robin)、加权随机&…...
flink的ProcessWindowFunction函数的三种状态
背景 在处理窗口函数时,ProcessWindowFunction处理函数可以定义三个状态: 富函数getRuntimeContext.getState, 每个key每个窗口的状态context.windowState(),每个key的状态context.globalState,那么这几个状态之间有什么关系呢? …...

day50-springboot+ajax分页
分页依赖: <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pagehelper-spring-boot-starter</artifactId> <version>1.0.0</version> </dependency> 配置: …...

Win7 专业版Windows time w32time服务电脑重启后老是已停止
环境: Win7 专业版 问题描述: Win7 专业版Windows time w32time服务电脑重启后老是已停止 解决方案: 1.检查启动Remote Procedure Call (RPC)、Remote Procedure Call (RPC) Locator,DCOM Server Process Launcher这三个服务是…...

全网最强,接口自动化测试-token登录关联实战总结(超详细)
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 在PC端登录公司的…...

OLAP ModelKit Crack,ADO.NET和IList
OLAP ModelKit Crack,ADO.NET和IList OLAP ModelKit是一个多功能的.NET OLAP组件,用C#编写,只包含100%托管代码。它具有XP主题的外观,并能够使用任何.NET数据源(ADO.NET和IList)。借助任何第三方组件(尤其是图表组件)呈现数据的能力扩展了产品…...

4 三组例子,用OpenCV玩转图像-AI-python
读取,缩放,旋转,写入图像 首先导入包,为了显示导入matplotlib/为了在matplotlib显示 导入CV2/查看版本 导入图片/查看图片类型 图片数组 数组大小 对于opencv通道顺序蓝色B、绿色G、红色R matplotlib通道顺序为 红色R、绿色G、蓝…...

计算机网络-三种交换方式
计算机网络-三种交换方式 电路交换(Circuit Switching) 电话交换机接通电话线的方式称为电路交换从通信资源分配的角度来看,交换(Switching)就是按照某种方式动态的分配传输线路的资源 电话交换机 为了解决电话之间通信两两之间连线过多,所以产生了电话…...

03 制作Ubuntu启动盘
1 软碟通 我是用软碟通制作启动盘。安装软碟通时一定要把虚拟光驱给勾选上,其余两个可以看你心情。 2 镜像文件 我使用清华镜像网站找到的Ubuntu镜像文件。 Index of /ubuntu-releases/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 请自己选择镜像…...

【JavaSE】String类中常用的字符串方法(超全)
目录 1.求字符串的长度 2.判断字符串是否为空 3.String对象的比较 3.1 判断字符串是否相同 3.2 比较字符串大小 3.3 忽略大小写比较 4.字符串查找 5.转化 5.1 数值和字符串转化 5.1.1 数字转字符串 valueof 5.1.2 valueOf的其他用法 5.1.3 字符串转数字 5.2 大小写转…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...