当前位置: 首页 > news >正文

【状态估计】一维粒子滤波研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

一维粒子滤波(1D Particle Filter)是一种基于粒子的滤波算法,用于估计一个系统中的状态变量。下面是对一维粒子滤波的概述:

1. 系统建模:首先,需要建立系统的状态空间模型。一维粒子滤波通常描述为一个动态系统,其中状态变量在时间步中随机演化。这可以通过一个状态转移函数来建模,通常假设系统的演化是非线性的。

2. 粒子表示:在一维粒子滤波中,使用一组粒子来表示对状态变量的估计。每个粒子都是一个状态假设,对系统的可能状态进行采样,可以使用随机数生成方法来生成粒子。

3. 重采样:随着时间推移和系统演化,粒子的权重会发生变化。在一维粒子滤波中,需要对粒子进行重采样,以根据它们的权重重新分配粒子的数量。重采样的目的是为了保留那些具有较高权重的粒子,去除那些权重较低的粒子。

4. 状态更新:根据测量观测值,需要对粒子进行状态更新。这是通过计算每个粒子的观测概率来实现的。观测概率度量了一个粒子与测量值之间的一致性,可以使用测量模型来计算。

5. 状态估计:根据粒子的权重,可以计算系统状态的估计值。一种常见的方法是使用粒子的加权平均值作为状态的估计,其中权重反映了粒子的可能性。

一维粒子滤波是一种基于贝叶斯滤波原理的非参数滤波方法,可以用于状态估计和跟踪问题。它适用于非线性系统和非高斯噪声的情况,并且能够处理多模态分布。然而,粒子滤波的效率和精度受到粒子数目的影响,过多的粒子会导致计算复杂度增加,而过少的粒子会引入估计误差。

以上是对一维粒子滤波的概述,涉及系统建模、粒子表示、重采样、状态更新和状态估计等关键步骤。具体的应用案例和算法细节可以根据实际问题进行调整和扩展。

📚2 运行结果

在命令框内按一个键才能逐步完成模拟。以蓝色显示移动前的粒子(带直方图)、用红线移动后的实际位置、用洋红色线显示的测量值、运动模型向前传播并根据测量值加权的粒子(以黑色显示),以红色显示重采样粒子(带直方图)

 

 

部分代码:

%%% PLOT SETTINGS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f1 = figure;
set(f1,'name', 'Monte Carlo Localization')
set(0,'defaultaxesfontsize',16);
set(0,'defaulttextfontsize',16);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SIGmeas = 1;  %standard deviation of measurement noise
SIGproc = 0.5; %standard deviation of process noise
SIGinit = 4; %standard deviation of initial position

M = 100;  %number of particles (the more, the better the particle
%Probability Mass Function (PMF) matches the true Probability Distribution
% Function (PDF).

CHI = [SIGinit*randn(M,1), ones(M,1)/M];  %array of particles and associated weights
xACTt = SIGinit*randn(1); %true position of the robot (unknown to particles)
ut = 5; %control input (constant motion in x-direction)
max_moves = 10;
for mv = 1:max_moves
    % move ACTUAL robot
    xACTt = sample_motion_model(ut, xACTt, SIGproc);
    %take measurement

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

1. 杨琛, 孟翔宇, 李绪连. (2017). 一维离散曲线上的粒子滤波算法. 计算机科学, 44(11), 261-263.

2. 吉宇峰, 赵孜辰, 李燕. (2016). 一维非线性系统的粒子滤波算法研究. 计算机科学与探索, 10(7), 767-775.

3. 孙增茹, 吴琳, 张良康. (2015). 基于一维粒子滤波算法的离散状态系统状态估计. 控制工程, 22(5), 826-829.

4. 赵凯, 张余波, 郑劲松等. (2016). 基于动力系统的一维离散状态粒子滤波算法研究. 电子与信息学报, 38(9), 2359-2366.

🌈4 Matlab代码实现

相关文章:

【状态估计】一维粒子滤波研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

设计模式-迭代器模式在Java中使用示例

场景 为开发一套销售管理系统,在对该系统进行分析和设计时,发现经常需要对系统中的商品数据、客户数据等进行遍历, 为了复用这些遍历代码,开发人员设计了一个抽象的数据集合类AbstractObjectList,而将存储商品和客户…...

Maven入职学习

一、什么是Maven? 概念: Maven是一种框架。它可以用作依赖管理工具、构建工具。 它可以管理jar包的规模、jar包的来源、jar包之间的依赖关系。 它的用途就是管理规模庞大的jar包,脱离IDE环境执行构建操作。 具体使用: 工作机…...

【多音音频测试信号】具有指定采样率和样本数的多音信号,生成多音信号的相位降低波峰因数研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

LeetCode150道面试经典题-删除有序数组中的重复项(简单)

1.题目 给你一个 升序排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数量为 k &#xff0c…...

人大金仓数据库Docker部署

docker 搭建 yum -y install yum-utilsyum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.reposystemctl start docker.servicesystemctl enable docker.servicesystemctl status docker.service 配置Docker cd /etc/docker/ vi da…...

Leetcode-每日一题【剑指 Offer 07. 重建二叉树】

题目 输入某二叉树的前序遍历和中序遍历的结果,请构建该二叉树并返回其根节点。 假设输入的前序遍历和中序遍历的结果中都不含重复的数字。 示例 1: Input: preorder [3,9,20,15,7], inorder [9,3,15,20,7]Output: [3,9,20,null,null,15,7] 示例 2: Input: preo…...

Shell编程快速入门

Shell编程快速入门 脚本格式要求 脚本以#!/bin/bash开头脚本需要有可执行权限 脚本的常用执行方式 方式1:输入脚本的绝对路径或相对路径方式2:sh脚本 Shell的变量 Shell变量介绍 Linux Shell中的变量分为系统变量和用户自定义变量 系统变量&#…...

wpf 3d 坐标系和基本三角形复习

wpf 3d 坐标系的描述见此, WPF 3d坐标系和基本三角形_wpf 坐标系_bcbobo21cn的博客-CSDN博客 X轴正向向右,Y轴正向向上;Z轴,正向是从屏幕里边出来,负向是往屏幕里边去;坐标原点是在呈现区域的中心&#x…...

如何安全变更亚马逊收款账户?

有太多的卖家想知道如何安全变更亚马逊收款账户,因为更改了第三方收款账户可能会导致二次视频认证或者增强视频。真的是这样吗? 其实不推荐亚马逊店铺正常运营之后去变更信用卡,收款账户等重要资料的,因为玩黑科技的卖家也真的多…...

大数据面试题:Hadoop中的几个进程和作用

面试题来源: 《大数据面试题 V4.0》 大数据面试题V3.0,523道题,679页,46w字 可回答:1)启动Hadoop,都会有什么进程 参考答案: 1)NameNode:Master&#xf…...

题解:ABC276D - Divide by 2 or 3

题解:ABC276D - Divide by 2 or 3 题目 链接:Atcoder。 链接:洛谷。 难度 算法难度:入门。 思维难度:入门。 调码难度:入门。 综合评价:极简。 算法 数论。 思路 由大脑可知&#x…...

后台管理系统

1.1 项目概述 简易后台管理系统是一个基于Vue3ElemrntPlus的后台管理系统,提供了用户登录、记住密码、数据的增删改查、分页、错误信息提示等功能,旨在协助管理员对特定数据进行管理和操作。 没有后台对接,数据源为假数据。 全部代码已上传G…...

C++数据结构之平衡二叉搜索树(一)——AVL的实现(zig与zag/左右双旋/3+4重构)

本文目录 00.BBST——平衡二叉搜索树01.AVL树02.AVL的插入2.1单旋——zig 与 zag2.2插入节点后的单旋实例2.3手玩小样例2.4双旋实例2.5小结 03.AVL的删除3.1单旋删除3.2双旋删除3.3小结 04.34重构05.综合评价AVL5.1优点5.2缺点 06.代码注意插入算法删除算法完整代码&#xff1a…...

静态库和动态库

库文件 库文件是计算机上的一类文件,可以简单的把库文件看成一种代码仓库,它提供给使用者一些可以直接拿来用的变量、函数或类。 库是特殊的一种程序,编写库的程序和编写一般的程序区别不大,只是库不能单独运行。库文件有两种&a…...

用于Voronoi图构建的Fortune算法的C++实现

Voronoi图是一种在计算几何中广泛使用的数据结构,它可以用于解决最近邻搜索、路径规划等问题。在这篇文章中,我们将探讨一种用于构建Voronoi图的高效算法——Fortune算法,并提供其C实现。 一、Voronoi图简介 Voronoi图是由一组点在平面上生…...

笔记汇总 | 斯坦福 CS229 机器学习

文章目录 前言课程参考文章推荐阅读 前言 本文为斯坦福大学 CS229 机器学习课程学习笔记 本文主体部分转载自黄海广博士,文末已给出链接,大家有兴趣可以直接访问笔记首页,下载对应课程资料及作业代码 课程官网:CS229: Machine …...

git 版本管理工具 学习笔记

git 学习笔记 目录 一、git是什么 二、创建仓库 三、工作区域和文件状态 四、添加和提交文件 五、回退版本 (了解) 六、查看差异 七、删除文件 八、.gitignore文件(了解) 九、github ssh-key配置 十、本地仓库和远程仓库内…...

Bean基本注解开发和Bean依赖注入注解开发

目录 1.Bean基本注解开发 Component Scorelazy PostConstruct和PreDestroy RepositoryServiceController 2.Bean依赖注入注解开发 Value Autowired Qualifier Resource 扩展AutoWired 1.Bean基本注解开发 基本Bean注解,主要是使用注释的方式替代原有xml的…...

使用IIS服务器搭建一个网站

参考文章 使用IIS(Internet Information Services)服务器搭建一个网站相对来说是比较简单的。以下是基本的步骤: 安装IIS: 首先,确保你的操作系统已经安装了IIS。在大多数Windows版本中,IIS都是可选安装项…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...