当前位置: 首页 > news >正文

矩阵定理复习记录

矩阵复习

矩阵导数定理

若A是一个如下矩阵:
A = [ a 11 a 12 a 21 a 22 ] A= \begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} A=[a11a21a12a22]
y是一个向量矩阵:
y ⃗ = [ y 1 y 2 ] \vec{y}=\begin{bmatrix}y_1\\y_2\end{bmatrix} y =[y1y2]
则可得 text 定理:
δ A ∗ y ⃗ δ y ⃗ = A T \frac{δA*\vec{y}}{δ\vec{y}} = A^T δy δAy =AT
δ y ⃗ T ∗ A δ y ⃗ = δ A T ∗ y ⃗ δ y ⃗ = A \frac{δ\vec{y}^T*A}{δ\vec{y}} = \frac{δA^T*\vec{y}}{δ\vec{y}} = A δy δy TA=δy δATy =A
也就是对A*y的矩阵,求偏导y,结果为A的转置矩阵;

还可得另一个定理:
δ y ⃗ T ∗ A y ⃗ δ y ⃗ = A y ⃗ + A T y ⃗ \frac{δ\vec{y}^T*A\vec{y}}{δ\vec{y}} = A\vec{y}+ A^T\vec{y} δy δy TAy =Ay +ATy
若A是一个对称矩阵,也就是 A T = A A^T=A AT=A,则上面的还会等于
2 A y ⃗ 2A\vec{y} 2Ay

δ符号表示求导, y ⃗ 表示一个向量 \vec{y}表示一个向量 y 表示一个向量

这部分的推导过程可参考此篇视频

矩阵平方定理

若矩阵A满足相乘原则,则有定理:
A 2 = A T ∗ A A^2 = A^T*A A2=ATA

单位矩阵

是一种恒等矩阵,对角线上全为1,其余全为0,如下:
I = [ 1 0 0 0 1 0 0 0 1 ] I = \begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix} I= 100010001
任何矩阵与单位矩阵相乘等于本身:
A ∗ I = I ∗ A = A A*I = I * A = A AI=IA=A

逆矩阵

注意逆矩阵不是转置矩阵,若两个矩阵A和B,n*n的方阵,且满足:
A ∗ B = I A*B=I AB=I
也就是矩阵相乘等于单位矩阵,也说明A就是B的逆矩阵,A是可逆的,记:B=A^-1

最小二乘法

若输入量为 x 1 , x 2 . . . x n x_1,x_2...x_n x1,x2...xn,输出量为 y 1 , y 2 . . . y n y_1,y_2...y_n y1,y2...yn,为了你和一条函数曲线,是的输入为 x i x_i xi,输出为 y i y_i yi,我们假定它是一个多项式函数如 y i = a x i 2 + b x i + c y_i = ax_i^2 + bx_i + c yi=axi2+bxi+c,x和y都有观察数据,求 a , b , c a,b,c a,b,c,因为数据又多组,带入矩阵中运算:
[ x 1 2 x 1 1 x 2 2 x 2 1 . . . . . . . . . x n 2 x n 2 1 ] [ a b c ] = [ y 1 y 2 . . . y n ] \begin{bmatrix}x_1^2 & x_1&1\\x_2^2&x_2&1\\...&...&...\\x_n^2&x_n^2&1\end{bmatrix}\begin{bmatrix}a\\b\\c\end{bmatrix}= \begin{bmatrix}y_1\\y_2\\...\\y_n\end{bmatrix} x12x22...xn2x1x2...xn211...1 abc = y1y2...yn
进而用X,A,Y替换:
X ∗ A = Y X*A=Y XA=Y
A矩阵就是我们要求取的未知参数,往往信号观察是在由噪声的环境中的,假设噪声为V,且噪声的均值为0,也就是正和负噪声,则推导公式:
X ∗ A = Y + V X*A=Y+V XA=Y+V
为了使误差最小,使用最小二乘法,二乘差值平方,也就是:
( Y − X ∗ A ) 2 = ( Y − X ∗ A ) T ( Y − X ∗ A ) (Y-X*A)^2 = (Y-X*A)^T(Y-X*A) (YXA)2=(YXA)T(YXA)
对上面的式子A求偏导:
δ ( Y − X ∗ A ) T ( Y − X ∗ A ) δ A \frac{δ(Y-X*A)^T(Y-X*A)}{δA} δAδ(YXA)T(YXA)
推导过程可参考此视频最小二乘法讲解,求出后领偏导函数等于0求极值,也就是误差最小值,得到定理:
A = ( X T X ) − 1 X T Y A = (X^TX)^{-1}X^TY A=(XTX)1XTY

相关文章:

矩阵定理复习记录

矩阵复习 矩阵导数定理 若A是一个如下矩阵: A [ a 11 a 12 a 21 a 22 ] A \begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} A[a11​a21​​a12​a22​​] y是一个向量矩阵: y ⃗ [ y 1 y 2 ] \vec{y}\begin{bmatrix}y_1\\y_2\e…...

Jenkins+Docker+SpringCloud微服务持续集成项目优化和微服务集群

JenkinsDockerSpringCloud微服务持续集成项目优化和微服务集群 JenkinsDockerSpringCloud部署方案优化JenkinsDockerSpringCloud集群部署流程说明修改所有微服务配置 设计Jenkins集群项目的构建参数编写多选项遍历脚本多项目提交进行代码审查多个项目打包及构建上传镜像把Eurek…...

认识 spring 中的事务 与 事务的传播机制

前言 本篇介绍spring中事务的实现方式,如何实现声明式事务,对事物进行参数的设置,了解事务的隔离级别和事务的传播机制;如有错误,请在评论区指正,让我们一起交流,共同进步! 文章目录…...

PHP中的16个危险函数

php中内置了许许多多的函数,在它们的帮助下可以使我们更加快速的进行开发和维护,但是这个函数中依然有许多的函数伴有高风险的,比如说一下的16个函数不到万不得已不尽量不要使用,因为许多“高手”可以通过这些函数抓取你的漏洞。 …...

11、Nvidia显卡驱动、CUDA、cuDNN、Anaconda及Tensorflow Pytorch版本

Nvidia显卡驱动、CUDA、cuDNN、Anaconda及Tensorflow-GPU版本 一、确定版本关系二、安装过程1.安装显卡驱动2、安装CUDA3、安装cudnn4、安装TensorFlow5、安装pytorch 三、卸载 一、确定版本关系 TensorFlow Pytorch推出cuda和cudnn的版本,cuda版本推出驱动可选版本…...

将数据库文件压缩并上传到文件服务器

1.引入上传工具和压缩包工具 <dependency><groupId>org.springframework</groupId><artifactId>spring-test</artifactId> </dependency> <dependency><groupId>com.zlpay</groupId><artifactId>zl-util-fastdfs…...

docker — 容器网络

一、概述 Docker容器每次重启后容器ip是会发生变化的。 这也意味着如果容器间使用ip地址来进行通信的话&#xff0c;一旦有容器重启&#xff0c;重启的容器将不再能被访问到。 而Docker 网络就能够解决这个问题。 Docker 网络主要有以下两个作用&#xff1a; 容器间的互联…...

腾讯面试题:使用Redis分布式锁可能会出现哪些问题?

嗨大家好&#xff0c;我是你们的小米&#xff01;今天要和大家聊一个有趣的话题&#xff0c;那就是“腾讯面试题&#xff1a;使用Redis做分布式锁可能会出现哪些问题&#xff1f;”没错&#xff0c;就是腾讯大佬们在面试时经常会问到的一个问题&#xff0c;我们来一起深入了解一…...

直接在html中引入Vue.js的cdn来实现Vue3的组合式API

Vue3的组合式API是使用setup函数来编写组件逻辑的。setup函数是Vue3中用于替代Vue2的选项API&#xff08;如data、methods等&#xff09;的一种方式。在setup函数中&#xff0c;你可以访问到一些特殊的响应式对象&#xff0c;并且可以返回一些可以在模板中使用的数据、方法等。…...

YAPi在线接口文档简单案例(结合Vue前端Demo)

在前后端分离开发中&#xff0c;我们都是基于文档进行开发&#xff0c;那前端人员有时候无法马上拿到后端的数据&#xff0c;该怎么办&#xff1f;我们一般采用mock模拟伪造数据直接进行测试&#xff0c;本篇文章主要介绍YApi在线接口文档的简单使用&#xff0c;并结合Vue的小d…...

Java基础篇--Runtime类

介绍 Runtime类用于表示虚拟机运行时的状态&#xff0c;它用于封装JVM虚拟机进程。每次使用java命令启动虚拟机都对应一个Runtime实例&#xff0c;并且只有一个实例。 因此在Runtime类定义的时候&#xff0c;它的构造方法已经被私有化了(单例设计模式的应用)&#xff0c;对象…...

数字后端笔试题(1)DCG后congestion问题

我正在「拾陆楼」和朋友们讨论有趣的话题&#xff0c;你⼀起来吧&#xff1f; 拾陆楼知识星球入口 已知某模块的DCG结果显示存在congestion&#xff0c;有congestion部分逻辑结构如下图: 问题1: 如何分析该电路有congestion问题的原因&#xff1f; 答&#xff1a;data selecti…...

数据结构:交换排序

冒泡排序 起泡排序&#xff0c;别名“冒泡排序”&#xff0c;该算法的核心思想是将无序表中的所有记录&#xff0c;通过两两比较关键字&#xff0c;得出升序序列或者降序序列。 算法步骤 比较相邻的元素。如果第一个元素大于第二个元素&#xff0c;就交换它们。对每一对相邻…...

SpringBoot复习:(42)WebServerCustomizer的customize方法是在哪里被调用的?

ServletWebServletAutoConfiguration类定义如下&#xff1a; 可以看到其中通过Import注解导入了其内部类BeanPostProcessorRegister。 BeanPostProcessor中定义的registerBeanDefinition方法会被Spring容器调用。 registerBeanDefinitions方法调用了RegistrySyntheticBeanIf…...

年至年的选择仿elementui的样式

组件&#xff1a;<!--* Author: liuyu liuyuxizhengtech.com* Date: 2023-02-01 16:57:27* LastEditors: wangping wangpingxizhengtech.com* LastEditTime: 2023-06-30 17:25:14* Description: 时间选择年 - 年 --> <template><div class"yearPicker"…...

分类过程中的一种遮挡现象

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点&#xff0c;AB训练集各由6张二值化的图片组成&#xff0c;让A&#xff0c;B中各有3个点&#xff0c;且不重合&#xff0c;统计迭代次数并排序。 其中有10组数据 差值结构 迭代次数 构造平均列A 构造平均列AB…...

下一代服务架构:单体架构-->分布式架构-->微服务(DDD)-->软件定义架构(SDF with GraphEngine)

参考&#xff1a;自己实现一个SQL解析引擎_曾经的学渣的博客-CSDN博客...

excel 之 VBA

1、excel和VBA 高效办公&#xff0c;把重复性的工作写成VBA代码&#xff08;VB代码的衍生物&#xff0c;语法和VBA相同&#xff09;。 首先打开开发工具模式&#xff0c;如果没有选显卡&#xff0c;需要手动打开 打开程序编辑界面 快捷键 altF11一般操作 程序调试&#xf…...

【数学建模】--聚类模型

聚类模型的定义&#xff1a; “物以类聚&#xff0c;人以群分”&#xff0c;所谓的聚类&#xff0c;就是将样本划分为由类似的对象组成的多个类的过程。聚类后&#xff0c;我们可以更加准确的在每个类中单独使用统计模型进行估计&#xff0c;分析或预测&#xff1b;也可以探究不…...

css3新增选择器总结

目录 一、属性选择器 二、结构伪类选择器 三、伪元素选择器 四、UI状态伪类选择器 五、反选伪类选择器 六、target选择器 七、父亲选择器、后代选择器 八、相邻兄弟选择器、兄弟们选择器 一、属性选择器 &#xff08;除IE6外的大部分浏览器支持&#xff09; E&#…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...