11、Nvidia显卡驱动、CUDA、cuDNN、Anaconda及Tensorflow Pytorch版本
Nvidia显卡驱动、CUDA、cuDNN、Anaconda及Tensorflow-GPU版本
- 一、确定版本关系
- 二、安装过程
- 1.安装显卡驱动
- 2、安装CUDA
- 3、安装cudnn
- 4、安装TensorFlow
- 5、安装pytorch
- 三、卸载
一、确定版本关系
TensorFlow Pytorch推出cuda和cudnn的版本,cuda版本推出驱动可选版本
1、CUDA与显卡驱动
https://www.nvidia.com/Download/index.aspx


2、cuDNN Toolkit与CUDA版本
https://developer.nvidia.com/rdp/cudnn-archive

3、TensorFlow与CUDA cuDNN
https://tensorflow.google.cn/install/source?hl=en

4、Pytorch与CUDA cuDNN
https://pytorch.org/


5、cudnn
https://zhuanlan.zhihu.com/p/639184948
https://blog.csdn.net/Williamcsj/article/details/123514435
官方下载地址:https://developer.nvidia.com/rdp/cudnn-archive

安装TensorFlow
- 安装依赖包
安装 TensorFlow 之前需要我们安装两个个依赖包,这里我的 cuda 版本为 11.1,cudnn 版本为 8.1.0,下载依赖包为
libcudnn8_8.1.0.77-1+cuda11.2_amd64.deb
libcudnn8-dev_8.1.0.77-1+cuda11.2_amd64.deb
官网链接如下:https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/
这里我使用 wget 下载:
参考链接:https://blog.csdn.net/weixin_46584887/article/details/122726278
官方教程:https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

二、安装过程
参考:
https://blog.csdn.net/m0_45447650/article/details/132058561
https://blog.csdn.net/weixin_46584887/article/details/122726278
1.安装显卡驱动
方法(1)在线安装
1. 卸载旧版本nvidia驱动
如果没有安装nvidia驱动,可直接跳过。$ sudo apt purge nvidia*
1
2. 把显卡驱动加入PPA
$ sudo add-apt-repository ppa:graphics-drivers
$ sudo apt update
1
2
3. 查找版本库中显卡驱动
使用以下命令查看系统版本库中所有nvidia驱动的信息,根据需要选择合适的版本。$ sudo apt-cache search nvidia
1
推荐使用以下命令,查看Ubuntu推荐的驱动版本,从中选择合适的版本。$ ubuntu-drivers devices
参考链接:https://blog.csdn.net/qq_28256407/article/details/115548675
方法(2)下载安装
https://www.nvidia.com/Download/index.aspx

可以参考:https://blog.csdn.net/Perfect886/article/details/119109380,之前是run文件,现在是def文件,Debian安装命令一般sudo dpkg -i 命令。
例如:sudo dpkg -i cuda-repo--X-Y-local_*_x86_64.deb
2、安装CUDA
方法一:用run方式,可以选择是否安装驱动,一般不选
https://developer.nvidia.com/cuda-downloads?

选择是否安装:https://zhuanlan.zhihu.com/p/501473091

配置环境
配置环境
gedit ~/.bashrc
在打开的文件中添加
export CUDA_HOME=/usr/local/cuda-11.1
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64
export PATH=${CUDA_HOME}/bin:${PATH}
链接:https://blog.csdn.net/qq_39821101/article/details/116092190
方法二:官方教程:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#

参考:https://blog.csdn.net/qq_39821101/article/details/116092190
https://blog.csdn.net/m0_45447650/article/details/132058561
3、安装cudnn
(1)下载安装:cudann
https://developer.nvidia.com/rdp/cudnn-archive

2 安装deb文件(安装 TensorFlow 之前需要我们安装两个个依赖包)
官方下载地址:https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/

使用如下语句依次安装:(debain命令,Ubuntu也可以)
sudo dpkg -i libcudnn8_8.0.3.33-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-dev_8.0.3.33-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.3.33-1+cuda11.0_amd64.deb
Ubuntu命令,作为参考
执行以下命令:
sudo apt install ./cudnn-local-repo-ubuntu2004-*amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2004-8.4.1.88/cudnn-local-4B348671-keyring.gpg /usr/share/keyrings/
sudo apt update
#下面自动匹配版本,注意版本不对会出错
sudo apt install libcudnn8
sudo apt install libcudnn8-dev
sudo apt install libcudnn8-samples
参考:https://zhuanlan.zhihu.com/p/126997172
https://zhuanlan.zhihu.com/p/639184948
4、安装TensorFlow
pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow
#(2)查看cuda是否可用
import tensorflow as tf
print(tf.test.is_gpu_available())#如果结果是True,表示GPU可用
5、安装pytorch
pip3 install torch torchvision torchaudio
import torch
print(torch.__version__)
print(torch.cuda.is_available())

三、卸载
1. 卸载旧版本nvidia驱动
如果没有安装nvidia驱动,可直接跳过。
$ sudo apt purge nvidia*2、卸载cuda
#只执行这条可以
sudo apt-get autoremove nvidia-cuda-toolkitcd /usr/local/cuda-11.1/bin
sudo ./cuda-uninstaller
sudo rm -rf /usr/local/cuda-11.1
从https://developer.nvidia.com/cuda-toolkit-archive下载对应版本的cuda
如果你之前执行过sudo apt-get install nvidia-cuda-toolkit,需要卸载:sudo apt-get autoremove nvidia-cuda-toolkitsudo apt-get install nvidia-cuda-toolkit
# 卸载
sudo apt-get autoremove nvidia-cuda-toolkit
在终端输入
nvcc -V
没有cuda版本信息,则卸载成功
链接:https://blog.csdn.net/qq_39821101/article/details/1160921903、卸载cudnn
查询:
sudo dpkg -l | grep cudnn
将其全部卸载:
sudo dpkg -r libcudnn8-samples
sudo dpkg -r libcudnn8-dev
sudo dpkg -r libcudnn8检查:
输入下面指令后,没有任何输出即卸载成功。
sudo dpkg -l | grep cudnn
接:https://blog.csdn.net/Williamcsj/article/details/123514435相关文章:
11、Nvidia显卡驱动、CUDA、cuDNN、Anaconda及Tensorflow Pytorch版本
Nvidia显卡驱动、CUDA、cuDNN、Anaconda及Tensorflow-GPU版本 一、确定版本关系二、安装过程1.安装显卡驱动2、安装CUDA3、安装cudnn4、安装TensorFlow5、安装pytorch 三、卸载 一、确定版本关系 TensorFlow Pytorch推出cuda和cudnn的版本,cuda版本推出驱动可选版本…...
将数据库文件压缩并上传到文件服务器
1.引入上传工具和压缩包工具 <dependency><groupId>org.springframework</groupId><artifactId>spring-test</artifactId> </dependency> <dependency><groupId>com.zlpay</groupId><artifactId>zl-util-fastdfs…...
docker — 容器网络
一、概述 Docker容器每次重启后容器ip是会发生变化的。 这也意味着如果容器间使用ip地址来进行通信的话,一旦有容器重启,重启的容器将不再能被访问到。 而Docker 网络就能够解决这个问题。 Docker 网络主要有以下两个作用: 容器间的互联…...
腾讯面试题:使用Redis分布式锁可能会出现哪些问题?
嗨大家好,我是你们的小米!今天要和大家聊一个有趣的话题,那就是“腾讯面试题:使用Redis做分布式锁可能会出现哪些问题?”没错,就是腾讯大佬们在面试时经常会问到的一个问题,我们来一起深入了解一…...
直接在html中引入Vue.js的cdn来实现Vue3的组合式API
Vue3的组合式API是使用setup函数来编写组件逻辑的。setup函数是Vue3中用于替代Vue2的选项API(如data、methods等)的一种方式。在setup函数中,你可以访问到一些特殊的响应式对象,并且可以返回一些可以在模板中使用的数据、方法等。…...
YAPi在线接口文档简单案例(结合Vue前端Demo)
在前后端分离开发中,我们都是基于文档进行开发,那前端人员有时候无法马上拿到后端的数据,该怎么办?我们一般采用mock模拟伪造数据直接进行测试,本篇文章主要介绍YApi在线接口文档的简单使用,并结合Vue的小d…...
Java基础篇--Runtime类
介绍 Runtime类用于表示虚拟机运行时的状态,它用于封装JVM虚拟机进程。每次使用java命令启动虚拟机都对应一个Runtime实例,并且只有一个实例。 因此在Runtime类定义的时候,它的构造方法已经被私有化了(单例设计模式的应用),对象…...
数字后端笔试题(1)DCG后congestion问题
我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 已知某模块的DCG结果显示存在congestion,有congestion部分逻辑结构如下图: 问题1: 如何分析该电路有congestion问题的原因? 答:data selecti…...
数据结构:交换排序
冒泡排序 起泡排序,别名“冒泡排序”,该算法的核心思想是将无序表中的所有记录,通过两两比较关键字,得出升序序列或者降序序列。 算法步骤 比较相邻的元素。如果第一个元素大于第二个元素,就交换它们。对每一对相邻…...
SpringBoot复习:(42)WebServerCustomizer的customize方法是在哪里被调用的?
ServletWebServletAutoConfiguration类定义如下: 可以看到其中通过Import注解导入了其内部类BeanPostProcessorRegister。 BeanPostProcessor中定义的registerBeanDefinition方法会被Spring容器调用。 registerBeanDefinitions方法调用了RegistrySyntheticBeanIf…...
年至年的选择仿elementui的样式
组件:<!--* Author: liuyu liuyuxizhengtech.com* Date: 2023-02-01 16:57:27* LastEditors: wangping wangpingxizhengtech.com* LastEditTime: 2023-06-30 17:25:14* Description: 时间选择年 - 年 --> <template><div class"yearPicker"…...
分类过程中的一种遮挡现象
( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点,AB训练集各由6张二值化的图片组成,让A,B中各有3个点,且不重合,统计迭代次数并排序。 其中有10组数据 差值结构 迭代次数 构造平均列A 构造平均列AB…...
下一代服务架构:单体架构-->分布式架构-->微服务(DDD)-->软件定义架构(SDF with GraphEngine)
参考:自己实现一个SQL解析引擎_曾经的学渣的博客-CSDN博客...
excel 之 VBA
1、excel和VBA 高效办公,把重复性的工作写成VBA代码(VB代码的衍生物,语法和VBA相同)。 首先打开开发工具模式,如果没有选显卡,需要手动打开 打开程序编辑界面 快捷键 altF11一般操作 程序调试…...
【数学建模】--聚类模型
聚类模型的定义: “物以类聚,人以群分”,所谓的聚类,就是将样本划分为由类似的对象组成的多个类的过程。聚类后,我们可以更加准确的在每个类中单独使用统计模型进行估计,分析或预测;也可以探究不…...
css3新增选择器总结
目录 一、属性选择器 二、结构伪类选择器 三、伪元素选择器 四、UI状态伪类选择器 五、反选伪类选择器 六、target选择器 七、父亲选择器、后代选择器 八、相邻兄弟选择器、兄弟们选择器 一、属性选择器 (除IE6外的大部分浏览器支持) E&#…...
0基础学C#笔记10:归并排序法
文章目录 前言一、递归的方式二、代码总结 前言 将一个大的无序数组有序,我们可以把大的数组分成两个,然后对这两个数组分别进行排序,之后在把这两个数组合并成一个有序的数组。由于两个小的数组都是有序的,所以在合并的时候是很…...
nlohmann json:通过for遍历object和array
object和array可以使用数for进行遍历: #include <iostream> #include <nlohmann/json.hpp> using namespace std; using json = nlohmann::json;auto checkJsonType(json& x) {if(x.type() == json::value_t::null){cout<<x<<" is null&quo…...
适配器模式:将不兼容的接口转换为可兼容的接口
适配器模式:将不兼容的接口转换为可兼容的接口 什么是适配器模式? 适配器模式是一种结构型设计模式,用于将一个类的接口转换为客户端所期望的另一个接口。它允许不兼容的类能够合作,使得原本由于接口不匹配而无法工作的类能够一…...
【量化课程】07_量化回测
文章目录 7.1 pandas计算策略评估指标数据准备净值曲线年化收益率波动率最大回撤Alpha系数和Beta系数夏普比率信息比率 7.2 聚宽平台量化回测实践平台介绍策略实现 7.3 Backtrader平台量化回测实践Backtrader简介Backtrader量化回测框架实践 7.4 BigQuant量化框架实战BigQuant简…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
