饿了么大数据开发凉经
1 一个mapreduce进程会启动多少map进程多少reduce进程*
1)map数量由处理的数据分成的block数量决定default_num = total_size / split_size;
2)reduce数量为job.setNumReduceTasks(x)中x 的大小。不设置的话默认为 1。
2 讲下shuffle的过程
shuffle分为map端和reduce端的工作。
MapTask工作机制
(1)Read阶段:Map Task通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。
(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。
(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。(5)Combine阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
ReduceTask工作机制
(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。
(3)Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。(4)Reduce阶段:reduce()函数将计算结果写到HDFS上。
3 常见的数据倾斜情况以及解决方案
- 空值引发的数据倾斜
解决方案:
第一种:可以直接不让null值参与join操作,即不让null值有shuffle第二种:因为null值参与shuffle时的hash结果是一样的,那么我们可以给null值随机赋值,这样它们的hash结果就不一样,就会进到不同的reduce中 - 不同数据类型引发的数据倾斜
解决方案:
如果key字段既有string类型也有int类型,默认的hash就都会按int类型来分配,那我们直接把int类型都转为string就好了,这样key字段都为string,hash时就按照string类型分配了 - 不可拆分大文件引发的数据倾斜
解决方案:
这种数据倾斜问题没有什么好的解决方案,只能将使用GZIP压缩等不支持文件分割的文件转为bzip和zip等支持文件分割的压缩方式。
所以,我们在对文件进行压缩时,为避免因不可拆分大文件而引发数据读取的倾斜,在数据压缩的时候可以采用bzip2和Zip等支持文件分割的压缩算法。 - 数据膨胀引发的数据倾斜
解决方案:
在Hive中可以通过参数 hive.new.job.grouping.set.cardinality 配置的方式自动控制作业的拆解,该参数默认值是30。表示针对grouping sets/rollups/cubes这类多维聚合的操作,如果最后拆解的键组合大于该值,会启用新的任务去处理大于该值之外的组合。如果在处理数据时,某个分组聚合的列有较大的倾斜,可以适当调小该值。 - 表连接时引发的数据倾斜
解决方案:
通常做法是将倾斜的数据存到分布式缓存中,分发到各个Map任务所在节点。在Map阶段完成join操作,即MapJoin,这避免了 Shuffle,从而避免了数据倾斜。 - 其他情况引发的数据倾斜
解决方案:
这类问题最直接的方式就是调整reduce所执行的内存大小。
调整reduce的内存大小使用mapreduce.reduce.memory.mb这个配置。
4 HBase读写流程*
HBase读写数据与操作流程https://zhuanlan.zhihu.com/p/373740211
5 星形模型的特点
- 维度表只和事实表关联,维度表之间没有关联;
- 每个维度表的主码为单列,且该主码放置在事实表中,作为两边连接的外码;
- 以事实表为核心,维度表围绕核心呈星形分布。
6 常见事实表几种?特点?周期形快照事实表的特点?除了是数值形的还有什么?*
一篇文章搞懂数据仓库:三种事实表(设计原则,设计方法、对比)-阿里云开发者社区一篇文章搞懂数据仓库:三种事实表(设计原则,设计方法、对比)https://developer.aliyun.com/article/931862#:~:text=1%E3%80%81%E4%B8%89%E7%A7%8D%E4%BA%8B%E5%AE%9E%E8%A1%A8%E6%A6%82%E8%BF%B0%201%201.1%20%E4%BA%8B%E5%8A%A1%E4%BA%8B%E5%AE%9E%E8%A1%A8%20%E4%B9%9F%E7%A7%B0%E5%8E%9F%E5%AD%90%E4%BA%8B%E5%AE%9E%E8%A1%A8%EF%BC%8C%E6%8F%8F%E8%BF%B0%E4%B8%9A%E5%8A%A1%E8%BF%87%E7%A8%8B%EF%BC%8C%E8%B7%9F%E8%B8%AA%E6%8E%A7%E4%BB%B6%E6%88%96%E6%97%B6%E9%97%B4%E4%B8%8A%E6%9F%90%E7%82%B9%E7%9A%84%E5%BA%A6%E9%87%8F%E4%BA%8B%E4%BB%B6%EF%BC%8C%E4%BF%9D%E5%AD%98%E7%9A%84%E6%98%AF%E6%9C%80%E5%8E%9F%E5%AD%90%E7%9A%84%E6%95%B0%E6%8D%AE%EF%BC%9B%20%E4%B8%AA%E4%BA%BA%E7%90%86%E8%A7%A3%EF%BC%9A%E7%B1%BB%E4%BC%BC%E4%BA%8Emysql%20binlog%E6%97%A5%E5%BF%97%EF%BC%8C%E6%AF%8F%E4%B8%80%E6%AC%A1%E7%9B%B8%E5%85%B3%E7%9A%84%20change,%E4%B8%AA%E4%BA%BA%E7%90%86%E8%A7%A3%EF%BC%9A%E8%A6%81%E7%9C%8B%E6%95%B4%E4%B8%AA%E7%94%9F%E5%91%BD%E5%91%A8%E6%9C%9F%E7%9A%84%E5%A4%9A%E4%B8%AA%E4%B8%9A%E5%8A%A1%E8%BF%87%E7%A8%8B%EF%BC%8C%E6%AF%94%E5%A6%82%EF%BC%9A%E5%88%9B%E5%BB%BA%E8%AE%A2%E5%8D%95%20%E2%86%92%20%E4%B9%B0%E5%AE%B6%E4%BB%98%E6%AC%BE%20%E2%86%92%20%E5%8D%96%E5%AE%B6%E5%8F%91%E8%B4%A7%20%E2%86%92%20%E4%B9%B0%E5%AE%B6%E7%A1%AE%E8%AE%A4%E6%94%B6%E8%B4%A7%E3%80%82%20
7 主题域划分的思路*
按部门划分、按业务线划分、按业务系统划分、按业务过程划分。
8 数仓建模6连(细问项目)
- 有负责过具体某个域或者某个主题的开发吗?
- 一共化了几个主题域?挑一个讲一讲
- 做了哪个域的建设,负责了哪些业务过程,一致性纬度有哪些,建了哪些表?
- 描述下总线矩阵(一边是业务过程、一边是一致性维度)
- dwd是怎么建设?
- 用户下单有很多流水,是什么类型的事实表?有哪些维表?
按照业务系统划分,先按系统划分一级主题域,再按系统各自的菜单(也就是子系统)划分二级主题域,例如主要的订票APP实际上有订票系统,还有积分系统,值机系统,抽奖活动系统等等。
我来介绍下我做过的托运系统的主题域,其业务过程大致如下:创建订单(订单维度(订单id、流水号、订单号、下单时间)、客户维度(用户昵称、用户真实姓名、用户性别、用户身份证号、用户出生日期)、航班维度(起飞机场名称、起飞城市id、到达机场、名称、是否转机)、城市维度)->买家付款->客户值机(打印登机牌上的信息,有城市维度、客户维度、)->航班起飞->航班降落->用户服务。
公共维度有城市维度(客户值机、航班起飞航班降落)、客户维度(创建订单、用户服务)、机长维度、乘务员维、机场维度、航班维度。
9 数据治理做了哪些工作?*
数据治理分为四个实施步骤:统筹规划→管理实施→稽核检查→资产运营,我主要参与了前两个步骤,在第一步统筹规划中,我的主要工作在盘点数据资产,其主要针对元数据,根据大数据之路的第12章,将元数据分成两类,技术性元数据和业务形元数据,然后针对业务形元数据梳理血缘图谱,并给元数据打标签。在第二步工作中,我主要通过计算统计量对数据质量做出评估,计算空值的比例,计算空值字段较多的比例,计算有效字段的中位数和众数(当空值达到一定比例时,认为该字段无效,遵循3西格玛准则,大于5%无效)
10 手撕SQL两道题
1.某一天的新用户。
窗口函数row_number()
2.连续7天登录的客户。*
先去重、再row_number()开窗、日期-rnk、最后group by id、rnk having count(*)>=7
相关文章:

饿了么大数据开发凉经
1 一个mapreduce进程会启动多少map进程多少reduce进程* 1)map数量由处理的数据分成的block数量决定default_num total_size / split_size; 2)reduce数量为job.setNumReduceTasks(x)中x 的大小。不设置的话默认为 1。 2 讲下shuffle的过程 shuffle分为…...
前端安全:XSS 与 CSRF 安全防御
在当今数字化的时代,前端安全性变得愈发重要。跨站脚本攻击(XSS)和跨站请求伪造(CSRF)是常见的前端安全威胁,但通过一些简单的防御策略,我们可以有效地保护我们的应用程序和用户信息。本文将为您…...

应用层读取wfp防火墙阻断记录
前言 之前的文档中,描写了如何对WFP防火墙进行操作[链接在此],这篇文档中,描述如何获取WFP防火墙进行阻断的操作记录。 需要注意的坑点 使用FWPM_NET_EVENT_TYPE获取防火墙日志时,需要注意,只有丢弃和内核丢弃&…...

web基础和tomcat的安装,部署jpress应用
目录 1. 简述静态网页和动态网页的区别。 2. 简述 Webl.0 和 Web2.0 的区别。 3. 安装tomcat8,配置服务启动脚本,部署jpress应用。 1. 简述静态网页和动态网页的区别。 【1】定义区别 请求响应信息,发给客户端进行处理,由浏览…...

idea git命令使用
这个标签标识单签分支:(标签图标) 标识关联分支:(五角星) 本地切换分支:如当前分支是dev ,git branch 显示的是dev ,然后通过 git checkout -b release 切换到release分支 git checkout re…...
软件测试技术之单元测试—工程师 Style 的测试方法
什么是单元测试? Wikipedia 对单元测试的定义: 在计算机编程中,单元测试(Unit Testing)又称为模块测试,是针对程序模块(软件设计的最小单位)来进行正确性检验的测试工作。 在实际…...

C#学习....
1.基础 //引用命名空间using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;//项目名或者命名空间 namespace _01_MY_First_Demo {//Program类class Program{//程序的主入口或者Main函数static void Main(S…...

C语言暑假刷题冲刺篇——day2
目录 一、选择题 二、编程题 🎈个人主页:库库的里昂 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏✨收录专栏:C语言每日一练 ✨其他专栏:代码小游戏C语言初阶🤝希望作者的文章能对你…...

springcloud3 hystrix实现服务降级的案例配置2
一 服务降级的说明 1.1 服务降级说明 "服务器忙,请稍后在试"不让客户达等待,立即返回一个友好的提示。 1.2 服务降级的触发情况 1.程序运行异常; 2.超时; 3.服务熔断触发服务降级;4 .线程池/信号量打…...

第 3 章 稀疏数组和队列(1)
3.1 稀疏 sparsearray 数组 3.1.1先看一个实际的需求 编写的五子棋程序中,有存盘退出和续上盘的功能。 分析问题: 因为该二维数组的很多值是默认值 0.因此记录了很多没有意义的数据.->稀疏数组 3.1.2基本介绍 当一个数组中大部分元素为 0,或者为同…...

7-10 奇偶分家
分数 10 全屏浏览题目 切换布局 作者 陈越 单位 浙江大学 给定N个正整数,请统计奇数和偶数各有多少个? 输入格式: 输入第一行给出一个正整N(≤1000);第2行给出N个非负整数,以空格分隔。 输…...

使用词向量以数学方式查找具有相似含义的单词
摄影:Nika Charakova 一、说明 简而言之,词向量只不过是表示自然语言词含义的一系列实数。这项技术是有用的NLP功能的重要推动力,使机器能够“理解”人类语言。本文讨论如何使用词向量以编程方式计算文本的语义相似性,例如&#x…...

opencv实现以图搜图
这里写目录标题 1. 步骤1.1 导入OpenCV库:1.2 加载图像1.3 提取特征1.4 匹配特征1.5 显示结果 2. 完整代码3. 测试图片及效果 1. 步骤 1.1 导入OpenCV库: 在您的C代码中,首先需要导入OpenCV库。您可以使用以下语句导入核心模块:…...

爬虫工作中代理失效了怎么处理?
Hey!亲爱的爬虫小伙伴们,是不是经常在爬虫的工作中遇到代理IP失效的问题?别着急,今天我来分享一些应对代理失效的妙招!这些方法简单易行,让你爬虫顺利进行. 一、为什么代理会失效? 在爬虫过程…...

使用虚拟环境conda安装不同版本的cuda,cudnn,pytorch
背景:在学习深度学习时,我们不可避免的需要跑多个神经网络,而不同的神经网络环境都不一样,所以必须要使用到虚拟环境(如conda)去做环境隔离,安装属于自己的环境。在这环境中,大多神经网络都必须要用到cuda&…...

【24择校指南】华东师范大学计算机考研考情分析
华东师范大学(B) 考研难度(☆☆☆☆) 内容:23考情概况(拟录取和复试分数人数统计)、院校概况、23考试科目、23复试详情、各科目及专业考情分析。 正文2563字,预计阅读:3分钟。 2023考情概况…...

什么是LAXCUS分布式操作系统?
相较Linux、Windows,Laxcus是同时在多台计算机上运行的操作系统,处理大规模、高并发、高性能业务,其特点是资源共享和任务并行,并实现【数存算管】超融合一体化。环境中的资源:CPU、GPU、内存、硬盘、网络,…...

Redis数据结构——链表list
链表是一种常用的数据结构,提供了顺序访问的方式,而且高效地增删操作。 Redis中广泛使用了链表,例如:列表的底层实现之一就是链表。 在Redis中,链表分为两部分:链表信息 链表节点。 链表节点用来表示链表…...

[自学记录06|*百人计划]Gamma矫正与线性工作流
一、前言 Gamma矫正其实也属于我前面落下的一块内容,打算把它补上,其它的没补是因为我之前写的GAMES101笔记里已经涵盖了,而Gamma矫正在101里面确实没提到,于是打算把它补上,这块内容并不难,但是想通透的理…...

【数据结构】二叉树链式结构的实现及其常见操作
目录 1.手搓二叉树 2.二叉树的遍历 2.1前序、中序以及后序遍历 2.2二叉树的层序遍历 3.二叉树的常见操作 3.1求二叉树节点数量 3.2求二叉树叶子节点数量 3.3求二叉树第k层节点个数 3.3求二叉树的深度 3.4二叉树查找值为x的节点 4.二叉树的销毁 1.手搓二叉树 在学习…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...