pytorch3d成功安装
一、pytorch3d是什么?
PyTorch3D的目标是帮助加速深度学习和3D交叉点的研究。3D数据比2D图像更复杂,在从事Mesh R-CNN和C3DPO等项目时,我们遇到了一些挑战,包括3D数据表示、批处理和速度。我们开发了许多有用的算子和抽象,用于3D深度学习,并希望与社区分享,以推动这一领域的新研究。
在PyTorch3D中,我们包含了高效的3D操作符、异构批处理功能和模块化可微渲染API,为该领域的研究人员提供了急需的工具包,以实现复杂3D输入的前沿研究。
来自:https://pytorch3d.org/docs/why_pytorch3d
二、安装步骤
1.添加anaconda源(最最最最最关键!!)
以清华源 ubuntu18.04为例,其他平台安装方法可以借鉴:
# 在终端执行以下代码
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
# 以上两条是Anaconda官方库的镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
# 以上是Anaconda第三方库 Conda Forge的镜像
# for linux
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# for legacy win-64
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
#以上两条是Pytorch的Anaconda第三方镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch3d/
conda config --set show_channel_urls yes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
添加完成后可以使用conda info命令查看是否添加成功
!!!添加pytorch源和pytorch3d源是最关键的步骤!!!
2.创建环境
以python3.8为例,这个看实际需求。
conda create -n pytorch3d python=3.8
conda activate pytorch3d
1
2
3.安装pytorch和pytorch3d
截止本文的编写时间,当前最版本pytorch3d为0.6.2,最高支持pytorch1.11.0,所以最好不要安装pytorch 1.12.0 以上版本;以pytorch 1.10.1版本为例,对了我的nvcc -v cuda版本是11.3,安装pytorch需要适配:
# 首先安装pytorch
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3
# 使用官方网站提供的命令安装,参考:https://pytorch.org/get-started/previous-versions/
# 但是尤其注意以因为已经更换过conda源了,所以不需要添加-c pytorch -c conda-forge,否则默认从官方源添加
# 这一步需要等待一段时间,但清华源速度总比官方源强多了
# 其次安装必要库
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
# 安装pytorch3d,只需要一条命令
conda install pytorch3d
1
2
3
4
5
6
7
8
9
10
11
12
那么就是激动人心的时刻了:
总结
完结撒花,希望后续在使用pytorch3d的过程中能够出一些好的教程,期待自己可以~
————————————————
版权声明:本文为CSDN博主「LuH1124」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_43357695/article/details/126063091
这上面是linux的吧
我先下载github上的
然后解压
发布版本 0.7.4 ·FacebookResearch/PyTorch3D ·GitHub
Releases · facebookresearch/pytorch3d (github.com)
8月4日尝试
conda install pytorch3d -c pytorch3d
conda install -c pytorch3d pytorch3d
https://data.pyg.org/whl/
这是torch的文件吧
pytorch3d
8.7日尝试成功
安装前置
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install jupyter
pip install scikit-image matplotlib imageio plotly opencv-python
pip install black usort flake8 flake8-bugbear flake8-comprehensions
Welcome to PyTorch3D’s documentation! — PyTorch3D documentation
官方文档
Release CUB 1.15.0 · NVIDIA/cub · GitHub
下载cub
Windows下Pytorch3d的安装方法_木清风居士的博客-CSDN博客
参考链接
打开
x64 Native Tools Command Prompt for VS 2019
然后cd到pytorch3d目录
激活conda activate pytorch3d
10.24 cv方向3DMM必备环境——Windows10/11下pytorch3d[完美安装版]_啥都会一点的老程,自在地镜强者的博客-CSDN博客
参考这篇
安装约需要五分钟,等吧,中间提示pillow没有安装
然后先安装conda install zlib
然后安装pillow,安装成功了。

总结:
1.安装cuda11.6然后安装torch版本为3.9的1.12的。然后安装cub,1.15.0版本的,在环境变量加上

安装好后,参考版本

下载pytorch3d的版本,我安装的0.7.4
安装VS 2019后,打开如下图所示的"x64 Native Tools Command Prompt for VS 2019"终端,然后cd到pytorch3d解压后的目录路径里:
激活对应的环境conda activate pytorch3d

打开cd到pytorch3d的位置,输入这两句
set DISTUTILS_USE_SDK=1
set PYTORCH3D_NO_NINJA=1
然后python setup.py install
然后报错
修改 pytorch3d里setup.py文件的源码:将extra_compile_args = {“cxx”: [“-std=c++14”]} 修改为: extra_compile_args = {“cxx”: []};
安装报错,修改setup.py里的文件

安装报错修改cuda的文件。打开你的cuda目录下:\include\thrust\system\cuda\config的代码,在74行加入提示的语句,如下修改:
修改增加第74行

Releases · facebookresearch/pytorch3d · GitHub
成功了,记录于此2023.08.07
有个报错,提示找不到文件,猜测是cuda没有安装对
相关文章:
pytorch3d成功安装
一、pytorch3d是什么? PyTorch3D的目标是帮助加速深度学习和3D交叉点的研究。3D数据比2D图像更复杂,在从事Mesh R-CNN和C3DPO等项目时,我们遇到了一些挑战,包括3D数据表示、批处理和速度。我们开发了许多有用的算子和抽象…...
【vue3】同个页面引入多个图表组件实现自适应的方法
首先说明,此方案仅针对vue3项目在同一个页面引入了多个图表组件,因为我发现不能框架不同的引入,resize的写法还不同 window.addEventListener("resize", function() {...// 在此处重新调用即可 }以下是具体写法: 循环…...
一文了解汽车芯片的分类及用途介绍
汽车芯片按其功能可分为控制类(MCU和AI芯片)、功率类、传感器和其他(如存储器)四种类型。市场基本被国际巨头所垄断。人们常说的汽车芯片是指汽车里的计算芯片,按集成规模可分为MCU芯片和AI芯片(SoC芯片&am…...
Linux0.11内核源码解析-truncate.c
truncate文件只要实现释放指定i节点在设备上占用的所有逻辑块,包括直接块、一次间接块、二次间接块。从而将文件节点对应的文件长度截为0,并释放占用的设备空间。 索引节点的逻辑块连接方式 释放一次间接块 static void free_ind(int dev,int block) {…...
LED驱动型IC芯片的原理介绍
一、LED驱动器是什么 LED驱动器(LED Driver),是指驱动LED发光或LED模块组件正常工作的电源调整电子器件。由于LED PN结的导通特性决定,它能适应的电源电压和电流变动范围十分狭窄,稍许偏离就可能无法点亮LED或者发光效…...
VLAN实验
实验题目如下: 实验拓扑如下: 实验要求如下: 【1】PC1/3的接口均为access模式,且属于van2,在同一网段 【2】PC2/4/5/6的IP地址在同一网段,与PC1/3不在同一网段 【3】PC2可以访问4/5/6,PC4不能…...
Qt应用开发(基础篇)——高级纯文本窗口 QPlainTextEdit
一、前言 QPlainTextEdit类继承于QAbstractScrollArea,QAbstractScrollArea继承于QFrame,是Qt用来显示和编辑纯文本的窗口。 滚屏区域基类https://blog.csdn.net/u014491932/article/details/132245486?spm1001.2014.3001.5501框架类QFramehttps://blo…...
三维可视化平台有哪些?Sovit3D可视化平台怎么样?
随着社会经济的发展和数字技术的进步,互联网行业发展迅速。为了适应新时代社会发展的需要,大数据在这个社会经济发展过程中随着技术的进步而显得尤为重要。同时,大数据技术的快速发展进程也推动了可视化技术的飞速发展,国内外各类…...
Xxl-job安装部署以及SpringBoot集成Xxl-job使用
1、安装Xxl-job: 可以使用docker拉取镜像部署和源码编译两种方式,这里选择源码编译安装。 代码拉取地址: https://github.com/xuxueli/xxl-job/tree/2.1.2 官方开发文档: https://www.xuxueli.com/xxl-job/#%E3%80%8A%E5%88%…...
【【超声波避障小车代码】】
超声波避障小车代码 #include <reg51.h> //通用51头文件 #include <intrins.h> //使用了_nop()_函数#define uchar unsigned char //用 uchar 表示 unsigned char 类型 #define uint unsigned int //用 uint 表示 unsigned int 类型sbit EN…...
TDI(Time Delay Integration)
TDI(Time Delay Integration)是一种特殊的图像采集技术,常用于线阵CCD(Charge-Coupled Device)相机。TDI技术可以在保持高分辨率的同时增强图像的信噪比(Signal-to-Noise Ratio, SNR)࿰…...
RHCE——一、安装部署及例行性工作
RHCE 一、网络服务1、准备工作2、RHEL9操作系统的安装部署3、配置并优化RHEL9操作系统4、网络配置5、修改网络连接 二、例行性工作1、单一执行的例行性工作2、循环执行的例行性工作 三、书写定时任务的注意事项四、系统级别的计划任务五、实验1、实验一:编写脚本tes…...
服务器数据库中了360后缀勒索病毒怎么办?360后缀勒索病毒的加密形式
随着信息技术的发展,企业的计算机服务器数据库变得越来越重要。然而,在数字时代,网络上的威胁也日益增多。近期,我们收到很多企业的求助,企业的计算机服务器遭到了360后缀勒索病毒的攻击,导致服务器内的所有…...
期权就是股指期货吗,哪个好做一点?
近年来,场内ETF期权产品不断扩大,越来越多的投资者有投资期权的想法。当我们看到期权时,我们会不知不觉地想到期货,虽然期货与期权只有一个字的区别,但实际上有很大的不同,那么期权就是股指期货吗ÿ…...
week32
本周目标: Belady现象的解释 操作系统 计组IO/MM chapter 刷力扣 ubuntu磁盘/网络/命令行进阶*1 tarball之类的使用 Question 大数据系统实验要学吗? 据说课讲得不好这是一门类似数据库的课程——大数据之hadoop / hive / hbase 的区别是什么&a…...
【数据库】P1 数据库基本常识
数据库基本常识 数据库 ≠ 数据库管理系统表(Table)SQL是什么 数据库 ≠ 数据库管理系统 数据库是保存有组织的数据的容器,数据库称为 DB(DataBase);数据库管理系统是创建和操纵数据库的软件,数…...
c语言——计算两个数的乘积
//计算两个数的乘积 #include<stdio.h> #include<stdlib.h> int main() {double firstNumber,secondNumber,product;printf("两个浮点数:");scanf("%lf,%lf",&firstNumber,&secondNumber);productfirstNumber*secondNumber…...
单机模型并行最佳实践
单机模型并行最佳实践 模型并行在分布式训练技术中被广泛使用。 先前的帖子已经解释了如何使用 DataParallel 在多个 GPU 上训练神经网络; 此功能将相同的模型复制到所有 GPU,其中每个 GPU 消耗输入数据的不同分区。 尽管它可以极大地加快训练过程&…...
编程练习(3)
一.选择题 第一题: 函数传参的两个变量都是传的地址,而数组名c本身就是地址,int型变量b需要使用&符号,因此答案为A 第二题: 本题考察const修饰指针变量,答案为A,B,C,D 第三题: 注意int 型变…...
PyTorch学习笔记(十三)——现有网络模型的使用及修改
以分类模型的VGG为例 vgg16_false torchvision.models.vgg16(weightsFalse) vgg16_true torchvision.models.vgg16(weightsTrue) 设置为 False 的情况,相当于网络模型中的参数都是初始化的、默认的设置为 True 时,网络模型中的参数在数据集上是训练好…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
