当前位置: 首页 > news >正文

二叉树前中后层次遍历,递归实现

文章目录

    • 前序遍历
      • 代码\Python
      • 代码\C++
    • 中序遍历
      • 代码\Python
      • 代码\C++
    • 后序遍历
      • 代码\Python
      • 代码\C++
    • 层序遍历
      • 代码\Python
      • 代码\C++
    • 反向层序遍历
      • 代码\Python
      • 代码\C++
    • 总结

前序遍历

题目链接
  前序遍历意思就是按照“根节点-左子树-右子树”的顺序来遍历二叉树,通过递归方法来实现的话很简单,我们只需要描述一下访问的规则:

1.如果当前节点为空,就返回
2.否则就访问当前节点,
3.访问左子树(左节点)
4.访问右子树(右节点)

  对python来说,一般我们用一个列表来保存访问的结果,列表对象是可修改对象,所以我们可以直接把列表对象当做函数的参数跟着传递;对C++来说,我们可以用一个vector向量来保存结果,在函数传递时使用传引用的方式,一样可以达到效果。

代码\Python

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:res = []self.preorder(root, res)return resdef preorder(self, root, res):if not root:returnres.append(root.val)self.preorder(root.left, res)self.preorder(root.right, res)

代码\C++

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {vector<int> res;travel(root, res);return res;}void travel(TreeNode *root, vector<int> &res){if(!root){return;}res.push_back(root->val);travel(root->left, res);travel(root->right, res);}
};

中序遍历

题目链接
  类似的,中序遍历就是遍历的时候把根节点放到中间,即“左子树-根节点-右子树”的顺序。只需要稍微修改一下代码就行。

代码\Python

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:res = []self.inorder(res, root)return resdef inorder(self, res, root):if root is None:returnself.inorder(res, root.left)res.append(root.val)self.inorder(res, root.right)

代码\C++

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> res;inorder(root, res);return res;}void inorder(TreeNode *root, vector<int> &res){if(!root){return;}inorder(root->left, res);res.push_back(root->val);inorder(root->right, res);}
};

后序遍历

添加链接描述
  类似的,后序遍历就是遍历的时候把根节点放到最后,即“左子树-右子树-根节点”的顺序。同样只需要稍微修改一下代码就行。

代码\Python

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:res = []self.postorder(res, root)return resdef postorder(self, res, root):if root is None:returnself.postorder(res, root.left)self.postorder(res, root.right)res.append(root.val)

代码\C++

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {vector<int> res;postorder(root, res);return res;}void postorder(TreeNode *root, vector<int> &res){if(!root){return;}postorder(root->left, res);postorder(root->right, res);res.push_back(root->val);}
};

层序遍历

题目链接
  层序遍历一般指对二叉树进行从上到下从左到右的一层一层的遍历,同样深度的节点在同一层。递归的层序遍历需要借助节点所在的深度信息。

代码\Python

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:res = []self.level(root, 0, res)return resdef level(self, root, depth, res):if not root:return []if len(res) == depth:res.append([])res[depth].append(root.val)if root.left:self.level(root.left, depth + 1, res)if root.right:self.level(root.right, depth + 1, res)

代码\C++

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {vector<vector<int>> res;travel(root, 0, res);return res;}void travel(TreeNode *root, int depth, vector<vector<int>> &res){if(!root){return;}if(res.size() == depth){res.push_back({});}res[depth].push_back(root->val);if(root->left){travel(root->left, depth + 1, res);}if(root->right){travel(root->right, depth + 1, res);}}
};

反向层序遍历

  反向层序遍历,顾名思义就是从下往上,从左往右的反着来,我们只需要在正向遍历的基础上,在最后返回答案前把答案反转一遍。

代码\Python


return res[::-1]
#or
return res.reverse()

代码\C++

reverse(res.begin(), res.end()); 
return res;

总结

  最常见最基础的4种二叉树的遍历方式,也是二叉树很多题目的基础算法,如果对你有帮助的话,动动手指点个赞吧!

相关文章:

二叉树前中后层次遍历,递归实现

文章目录前序遍历代码\Python代码\C中序遍历代码\Python代码\C后序遍历代码\Python代码\C层序遍历代码\Python代码\C反向层序遍历代码\Python代码\C总结前序遍历 题目链接   前序遍历意思就是按照“根节点-左子树-右子树”的顺序来遍历二叉树&#xff0c;通过递归方法来实现…...

【RA4M2系列开发板GPIO体验2按键控制LED】

【RA4M2系列开发板GPIO体验2按键控制LED】1. 前言2. 配置工程2.1 新建FSP项目2.2 硬件连接以及FSP配置2.2.1 硬件连接2.2.2 FSP配置3. 软件实现3.1 实现的功能3.2 FreeRTOS使用3.2.1 Stack分配函数3.2.2 LED任务3.2.3 Key任务3.3 程序设计3.3.1 设置输出hex文件3.3.2 编译3.3.3…...

初步介绍CUDA中的统一内存

初步介绍CUDA中的统一内存 更多精彩内容: https://www.nvidia.cn/gtc-global/?ncidref-dev-876561 文章目录初步介绍CUDA中的统一内存为此&#xff0c;我向您介绍了统一内存&#xff0c;它可以非常轻松地分配和访问可由系统中任何处理器、CPU 或 GPU 上运行的代码使用的数据。…...

UVM实战--加法器

前言 这里以UVM实战&#xff08;张强&#xff09;第二章为基础修改原有的DUT&#xff0c;将DUT修改为加法器&#xff0c;从而修改代码以使得更加深入的了解各个组件的类型和使用。 一. 组件的基本框架 和第二章的平台的主要区别点 &#xff08;1&#xff09;有两个transactio…...

Linux系统点亮LED

目录应用层操控硬件的两种方式sysfs 文件系统sysfs 与/sys总结标准接口与非标准接口LED 硬件控制方式编写LED 应用程序在开发板上测试对于一款学习型开发板来说&#xff0c;永远都绕不开LED 这个小小的设备&#xff0c;基本上每块板子都至少会有一颗 LED 小灯&#xff0c;对于我…...

在superset中快速制作报表或仪表盘

在中小型企业&#xff0c;当下需要快速迭代、快速了解运营效果的业务&#xff0c;急需一款开源、好用、能快速迭代生产的报表系统。 老板很关心&#xff0c;BI工程师很关心&#xff0c;同时系统开发人员也同样关心&#xff0c;一个好的技术选型往往能够帮助公司减少很多成本&a…...

【可视化实战】Python 绘制出来的数据大屏真的太惊艳了

今天我们在进行一个Python数据可视化的实战练习&#xff0c;用到的模块叫做Panel&#xff0c;我们通过调用此模块来绘制动态可交互的图表以及数据大屏的制作。 而本地需要用到的数据集&#xff0c;可在kaggle上面获取 https://www.kaggle.com/datasets/rtatman/188-million-us…...

Obsidium一键编码作业,Obsidia惊人属性

Obsidium一键编码作业,Obsidia惊人属性 每个区域都包含几个可定制的功能&#xff0c;允许用户确定如何完全执行应用程序的安全性。Obsidia的功能区允许用户存储任何调整或一键编码作业。 Obsidia惊人属性&#xff1a; 代码虚拟化&#xff1a;代码虚拟化允许您转换程序代码的特定…...

约束优化:约束优化的三种序列无约束优化方法

文章目录约束优化&#xff1a;约束优化的三种序列无约束优化方法外点罚函数法L2-罚函数法&#xff1a;非精确算法对于等式约束对于不等式约束L1-罚函数法&#xff1a;精确算法内点罚函数法&#xff1a;障碍函数法等式约束优化问题的拉格朗日函数法&#xff1a;Uzawas Method fo…...

RocketMQ快速入门:消息发送、延迟消息、消费重试

一起学编程&#xff0c;让生活更随和&#xff01; 如果你觉得是个同道中人&#xff0c;欢迎关注博主gzh&#xff1a;【随和的皮蛋桑】。 专注于Java基础、进阶、面试以及计算机基础知识分享&#x1f433;。偶尔认知思考、日常水文&#x1f40c;。 目录1、RocketMQ消息结构1.1…...

FANUC机器人通过KAREL程序实现与PLC位置坐标通信的具体方法示例

FANUC机器人通过KAREL程序实现与PLC位置坐标通信的具体方法示例 在通信IO点位数量足够的情况下,可以使用机器人的IO点传输位置数据,这里以传输机器人的实时位置为例进行说明。 基本流程如下图所示: 基本步骤可参考如下: 首先确认机器人控制柜已经安装了总线通信软件(例如…...

[蓝桥杯 2015 省 B] 移动距离

蓝桥杯 2015 年省赛 B 组 H 题题目描述X 星球居民小区的楼房全是一样的&#xff0c;并且按矩阵样式排列。其楼房的编号为 1,2,3,⋯ 。当排满一行时&#xff0c;从下一行相邻的楼往反方向排号。比如&#xff1a;当小区排号宽度为 6 时&#xff0c;开始情形如下&#xff1a;我们的…...

Pandas库入门仅需10分钟

数据处理的时候经常性需要整理出表格&#xff0c;在这里介绍pandas常见使用&#xff0c;目录如下&#xff1a; 数据结构导入导出文件对数据进行操作 – 增加数据&#xff08;创建数据&#xff09; – 删除数据 – 改动数据 – 查找数据 – 常用操作&#xff08;转置&#xff0…...

python的socket通信中,如何设置可以让两台主机通过外网访问?

要让两台主机通过外网进行Socket通信&#xff0c;需要在网络设置和代码实现两个方面进行相应的配置。下面是具体的步骤&#xff1a; 确认网络环境&#xff1a;首先要确保两台主机都能够通过外网访问。可以通过ping命令或者telnet命令来测试两台主机之间是否可以互相访问。 确定…...

检测数据的方法(回顾)

检测数据类型的4种方法typeofinstanceofconstructor{}.toString.call() 检测数据类型的4种方法 typeof 定义 用来检测数据类型的运算符 返回一个字符串&#xff0c;表示操作值的数据类型(7种) number&#xff0c;string&#xff0c;boolean&#xff0c;object&#xff0c;u…...

比特数据结构与算法(第三章_上)栈的概念和实现(力扣:20. 有效的括号)

一、栈&#xff08;stack&#xff09;栈的概念&#xff1a;① 栈是一种特殊的线性表&#xff0c;它只允许在固定的一端进行插入和删除元素的操作。② 进行数据插入的删除和操作的一端&#xff0c;称为栈顶 。另一端则称为 栈底 。③ 栈中的元素遵守后进先出的原则&#xff0c;即…...

JVM13 类的生命周期

1. 概述 在 Java 中数据类型分为基本数据类型和引用数据类型。基本数据类型由虚拟机预先定义&#xff0c;引用数据类型则需要进行类的加载。 按照 Java 虚拟机规范&#xff0c;从 class 文件到加载到内存中的类&#xff0c;到类卸载出内存为止&#xff0c;它的整个生命周期包…...

Docker网络模式解析

目录 前言 一、常用基本命令 &#xff08;一&#xff09;查看网络 &#xff08;二&#xff09;创建网络 &#xff08;三&#xff09;查看网络源数据 &#xff08;四&#xff09;删除网络 二、网络模式 &#xff08;一&#xff09;总体介绍 &#xff08;二&#xff09…...

游山城重庆

山城楼梯多&#xff0c;路都是上坡。 为了赶早上8点从成都到重庆的动车&#xff0c;凌晨5点半就爬起床来&#xff0c;由于昨天喝了咖啡&#xff0c;所以我将尽3点才睡觉&#xff0c;这意味着我只睡了2个多小时。起来简单休息之后&#xff0c;和朋友协商好时间就一起出门了。 …...

Vuex的创建和简单使用

Vuex 1.简介 1.1简介 1.框框里面才是Vuex state&#xff1a;状态数据action&#xff1a;处理异步mutations&#xff1a;处理同步&#xff0c;视图可以同步进行渲染1.2项目创建 1.vue create 名称 2.运行后 3.下载vuex。采用的是基于vue2的版本。 npm install vuex3 --save 4.vu…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...