Linux- 文件夹相关的常用指令
1. 统计文件夹下的文件数量
在 Linux 下,有几种方法可以统计文件夹下的文件数量:
-
使用
ls
和wc
命令: 这种方式可以统计目录下的直接子文件(不包括子目录里的文件)。ls -l <目录路径> | wc -l
注意:这将也统计目录自身,所以实际文件数量可能需要减1。
-
使用
find
命令: 如果你希望递归地统计目录及其所有子目录中的文件数量,你可以使用以下命令:find <目录路径> -type f | wc -l
这里,
-type f
表示只查找文件(不包括目录)。 -
使用
tree
命令:tree
是一个递归地列出目录和文件的命令,它也在输出的最后给出了文件和目录的数量。如果tree
命令没有安装,你可以使用包管理器(如apt
,yum
或brew
)来安装它。tree <目录路径>
输出的最后几行会显示文件和目录的数量。
选择适合你需求的方法即可。请将 <目录路径>
替换为想要统计文件数量的实际目录路径。
2. 统计文件夹下指定文件格式的文件数量
在 Linux 下,你可以使用 find
命令配合 wc
命令来统计目录下特定格式(比如 .txt
、.jpg
等)的文件数量。以下是一些例子:
统计当前目录下所有 .txt
文件:
find . -name "*.txt" -type f | wc -l
统计指定目录下所有 .jpg
文件:
find /path/to/directory -name "*.jpg" -type f | wc -l
在这些命令中:
find
是用来搜索文件的命令。-name
指定了文件名匹配模式。"*.txt"
和"*.jpg"
是文件名匹配模式,用于找出所有.txt
或.jpg
文件。-type f
表示只搜索文件(不包括目录)。| wc -l
是一个管道,它把find
命令找到的每一个文件名传递给wc
命令,wc
命令的-l
选项则用于计算这些文件名的数量。
请记得把 /path/to/directory
替换为你实际想要搜索的目录路径。
这样就能得到指定目录下特定文件格式的文件数量了。
3. 查看文件夹下的某个文件的大小
在Linux和Unix系统中,有多种方法可以查看文件夹下某个文件的大小。
-
使用
ls
命令:最常见的方法是使用ls -lh
命令,这里-l
表示长列表输出,-h
表示以易于阅读的格式(如K,M,G等)显示文件大小。ls -lh /path/to/directory/filename
在输出中,文件大小将显示在某一列上。
-
使用
stat
命令:stat
命令提供了关于文件或文件系统的详细信息。stat /path/to/directory/filename
输出中会有一个名为 “Size”的字段,表示文件的大小(以字节为单位)。
-
使用
du
命令:du
(磁盘使用情况)命令也可以用来查看文件大小,但通常用于目录。对于单一文件,使用方法如下:du -h /path/to/directory/filename
在这里,
-h
选项意味着“人类可读的”大小(如K,M,G等)。
只需将 /path/to/directory/filename
替换为你希望查询的实际文件路径即可。
4. 修改文件夹的名称
在 Linux 中,你可以使用 mv
(move)命令来重命名文件夹。基本语法如下:
mv old_folder_name new_folder_name
这里,old_folder_name
是你想要重命名的现有文件夹,而 new_folder_name
是你希望给它的新名称。
例如,如果你有一个名为 old_folder
的文件夹,你想把它重命名为 new_folder
,你可以执行以下命令:
mv old_folder new_folder
注意:
-
确保
new_folder_name
还没有被其他文件或文件夹使用,否则mv
命令会覆盖它,除非你使用了-i
选项来进行确认。 -
如果你不是文件夹的所有者或没有适当的权限,你可能需要使用
sudo
命令。
sudo mv old_folder_name new_folder_name
这是基础的重命名操作。有时你可能需要更复杂的操作,如在不同的目录中移动和重命名文件夹,但基本的 mv
命令通常足够用于简单的重命名操作。
相关文章:
Linux- 文件夹相关的常用指令
1. 统计文件夹下的文件数量 在 Linux 下,有几种方法可以统计文件夹下的文件数量: 使用 ls 和 wc 命令: 这种方式可以统计目录下的直接子文件(不包括子目录里的文件)。 ls -l <目录路径> | wc -l注意:…...

在 macOS 中安装 TensorFlow 1g
tensorflow 需要多大空间 pip install tensorflow pip install tensorflow Looking in indexes: https://pypi.douban.com/simple/ Collecting tensorflowDownloading https://pypi.doubanio.com/packages/1a/c1/9c14df0625836af8ba6628585c6d3c3bf8f1e1101cafa2435eb28a7764…...
数学建模:CRITIC赋权法
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 CRITIC赋权法 算法流程 构建原始数据矩阵 X X X,他是一个 m ∗ n m * n m∗n 的矩阵, m m m 表示评价对象个数, n n n 表示指标个数对原始数据矩阵进行正向化处理计算…...

Facebook message tag 使用攻略
Messenger 讯息传不出去?无法发送FB 讯息给非好友? 2020年3月,Facebook 为了防止用户被过多的推广或垃圾讯息困扰而更新使用条款,现在商家要用FB传讯息给所有人(包括非好友),应该使用 Facebook …...

气传导耳机哪个品牌比较好?综合表现很不错的气传导耳机推荐
气传导耳机不仅能够提升幸福感还能听到周围环境声,大大提高安全性。如果你在寻找一款高品质的气传导耳机,又不知从何入手时,不要担心,我已经为你精心挑选了四款市面上综合表现很不错的气传导耳机,让你享受更好的音质…...

Rabbitmq的消息转换器
Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象 ,只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题: 数据体积过大 有安全漏洞 可读…...
nvidia-docker的使用
拉取镜像 docker pull nvidia/cuda可能出现的问题 问题描述 Error response from daemon: manifest for nvidia/cuda:latest not found: manifest unknown: manifest解决方法: 为找到正确且合适的docker镜像版本 在supported-tags中找到与自己系统对应的cuda版本…...

C++新经典 | C语言
目录 一、基础之查漏补缺 1.float精度问题 2.字符型数据 3.变量初值问题 4.赋值&初始化 5.头文件之<> VS " " 6.逻辑运算 7.数组 7.1 二维数组初始化 7.2 字符数组 8.字符串处理函数 8.1 strcat 8.2 strcpy 8.3 strcmp 8.4 strlen 9.函数 …...

物联网智慧种植农业大棚系统
一、项目背景 智慧农业是是将物联网技术和农业生产箱管理的新型农业,依托部署在农业生产现场的各种传感节点,以物联网网关为通道形成数据传输网络,可以实现控制柜、环境监测传感器、气象监测机器等设备的远程监控,达到及时高校的…...

TabBar组件如何跳转页面?
1、先引入 2、假数据 const tabs [{key: home,title: 首页,icon: <AppOutline />,badge: Badge.dot,},{key: todo,title: 待办,icon: <UnorderedListOutline />,badge: 5,},{key: message,title: 消息,icon: (active: boolean) >active ? <MessageFill /&…...
Vue.js中,router和route
<div class"search">{{$route.params.things}}<van-nav-bar fixed title"商品列表" left-arrow click-left"$router.go(-1)" /><van-searchreadonlyshape"round"background"#ffffff"value"手机"sh…...
【微服务】07-缓存
文章目录 为不同的场景设计合适的缓存策略1. 缓存是什么2. 缓存的场景3. 缓存的策略4. 缓存位置5. 缓存实现的要点6. 注意问题7. 使用的组件8. 内存缓存和分布式缓存区别 总结 为不同的场景设计合适的缓存策略 1. 缓存是什么 缓存是计算结果的“临时”存储和重复使用缓存本质…...
权限校验中的“双token”方案
1. 双Token中的两个token分别是什么? 1.1 access_token 1.2 fresh_token 2. 为什么需要双token?一个token不行吗? 答: 两个token的职责不同。其中,access_token是在每次请求的时候携带给后端进行权限校验ÿ…...
TensorFlow的基本概念
TensorFlow 是由 Google 开发的开源机器学习框架,其基本概念如下: 1. 张量(Tensor):TensorFlow 中最基本的数据结构,是多维数组,可以理解为向量或矩阵的推广。常见的张量有常量张量、变量张量和…...

【卷积神经网络】MNIST 手写体识别
LeNet-5 是经典卷积神经网络之一,1998 年由 Yann LeCun 等人在论文 《Gradient-Based Learning Applied to Document Recognition》中提出。LeNet-5 网络使用了卷积层、池化层和全连接层,实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了 MNI…...

Ansible学习笔记2
Ansible是Python开发的自动化运维工具,集合了众多运维工具(Puppet、cfengine、chef、func、fabric)的优点,实现了批量系统配置,批量程序部署、批量运行命令等功能。 特点: 1)部署简单ÿ…...

80. 删除有序数组中的重复项 II
【中等题】 题目: 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额…...

CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析
CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析 漏洞简介 Windows错误报告服务在提交错误报告前会创建wermgr.exe进程,而攻击者使用特殊手法欺骗系统创建伪造的wermgr.exe进程,从而以system权限执行代码。 影响版本 Windows10 1507 * Wind…...

IDEA遇到 git pull 冲突的几种解决方法
1 忽略本地修改,强制拉取远程到本地 主要是项目中的文档目录,看的时候可能多了些标注,现在远程文档更新,本地的版本已无用,可以强拉 git fetch --all git reset --hard origin/dev git pull关于commit和pull的先后顺…...

[Unity]UI和美术出图效果不一致
问题描述:美术使用PS在Gamma空间下设计的UI图,导入到Unity,因为Unity使用的是线性空间,导致半透明的UI效果和美术设计的不一致。 解决方案: (一)让美术在线性空间下工作 (二&…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...