主成分分析笔记
主成分分析是指在尽量减少失真的前提下,将高维数据压缩成低微的方式。
减少失真是指最大化压缩后数据的方差。
记 P P P矩阵为 n × m n\times m n×m( n n n行 m m m列)的矩阵,表示一共有 m m m组数据,每组数据有 n n n个维度。
欲将此数据集降为 k k k维,即求 k × m k\times m k×m的矩阵 A A A。
思路是获得一种针对 n n n维的变换方法,将 n n n位列向量转为 k k k位列向量。然后对全部 m m m组数据分别应用此变换,这样就得到答案。
变换方法是使用形如 A = X P A=XP A=XP的算式。问题变为求 k × n k\times n k×n矩阵 X X X。
引入协方差的概念。
协方差是刻画两个列向量 X = { x 1 , x 2 , … , x n } T , Y = { y 1 , y 2 , … , y n } T X=\{x_1,x_2,\dots,x_n\}^\text{T},Y=\{y_1,y_2,\dots,y_n\}^\text{T} X={x1,x2,…,xn}T,Y={y1,y2,…,yn}T的相异程度。对于同一行来说,两个列向量在此行的数值相差越大,就会使协方差越大。
C o v ( X , Y ) = ∑ i = 1 n ( x i − x ^ ) ( y i − y ^ ) Cov(X,Y)=\sum_{i=1}^{n}{(x_i-\hat{x})(y_i-\hat{y})} Cov(X,Y)=i=1∑n(xi−x^)(yi−y^)
接下来的部分需要线性代数理论进行推导,在此只给出结论。
对于数据集的 n n n个维度来说,方差越大,说明数据之间的差异越大,说明越能区分不同数据,说明此维度越重要,越应该被保留。可以用协方差刻画差异。
本例中将关于 n n n维的所有协方差写成一个 n n n阶方阵 Q Q Q,其中 Q i , j Q_{i,j} Qi,j表示 C o v ( P i , P j ) Cov(P_i,P_j) Cov(Pi,Pj), P i P_i Pi表示 P P P的第 i i i行,也就是所有数据的第 i i i个维度。
至此便直接给出计算方法。
- 计算 Q Q Q;
- 求 Q Q Q的 n n n个特征值及其对应的特征(行)向量,将它们按照特征值从大到小的顺序排列,组成新的方阵 R R R;
- 取 R R R的前 k k k行,即 k × n k\times n k×n的矩阵 X X X;
- A = X P A=XP A=XP。
相关文章:
主成分分析笔记
主成分分析是指在尽量减少失真的前提下,将高维数据压缩成低微的方式。 减少失真是指最大化压缩后数据的方差。 记 P P P矩阵为 n m n\times m nm( n n n行 m m m列)的矩阵,表示一共有 m m m组数据,每组数据有 n n n…...

android studio 的 adb配置
首先在 Android Studio 中 打开 File -> Settings: 下载 “Google USB Driver” 这个插件 (真机调试的时候要用到), 并且记一下上面的SDK路径: 右键桌面上的 “我的电脑”, 点击 “高级系统设置”, 配置计算机的高级属性, 有两步: 添加一个新的环境变量 ANDROID_HOME, 变量…...

【HTML5高级第一篇】Web存储 - cookie、localStorage、sessionStorage
文章目录 一、数据存储1.1 cookie1.1.1 概念介绍1.1.2 存储与获取1.1.3 方法的封装1.1.4 总结 1.2 localstorage 与 sessionstorage1.2.1 概述1.2.2 操作数据的属性或方法1.2.3 案例-提交问卷1.2.4 Web Storage带来的好处 附录:1. HTML5提供的数据持久化技术&#x…...

Flink---1、概述、快速上手
1、Flink概述 1.1 Flink是什么 Flink的官网主页地址:https://flink.apache.org/ Flink的核心目标是“数据流上有状态的计算”(Stateful Computations over Data Streams)。 具体说明:Apache Flink是一个“框架和分布式处理引擎”,用于对无界…...

QT实现TCP通信(服务器与客户端搭建)
一、TCP通信框架 二、QT中的服务器操作 创建一个QTcpServer类对象,该类对象就是一个服务器调用listen函数将该对象设置为被动监听状态,监听时,可以监听指定的ip地址,也可以监听所有主机地址,可以通过指定端口号&#x…...
云备份项目
云备份项目 1. 云备份认识 自动将本地计算机上指定文件夹中需要备份的文件上传备份到服务器中。并且能够随时通过浏览器进行查看并且下载,其中下载过程支持断点续传功能,而服务器也会对上传文件进行热点管理,将非热点文件进行压缩存储&…...

基础算法(一)
目录 一.排序 快速排序: 归并排序: 二.二分法 整数二分模板: 浮点二分: 一.排序 快速排序: 从数列中挑出一个元素,称为 "基准"重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面&#…...

Consider defining a bean of type问题解决
Consider defining a bean of type问题解决 Consider defining a bean of type问题解决 包之后,发现项目直接报错Consider defining a bean of type。 会有一些包你明明Autowired 但是还是找不到什么bean 导致你项目启动不了 解决方法一: 这个问题主要是因为项目拆包…...

Android 1.2.1 使用Eclipse + ADT + SDK开发Android APP
1.2.1 使用Eclipse ADT SDK开发Android APP 1.前言 这里我们有两条路可以选,直接使用封装好的用于开发Android的ADT Bundle,或者自己进行配置 因为谷歌已经放弃了ADT的更新,官网上也取消的下载链接,这里提供谷歌放弃更新前最新…...

Llama-7b-hf和vicuna-7b-delta-v0合并成vicuna-7b-v0
最近使用pandagpt需要vicuna-7b-v0,重新过了一遍,前段时间部署了vicuna-7b-v3,还是有不少差别的,transforms和fastchat版本更新导致许多地方不匹配,出现很多错误,记录一下。 更多相关内容可见Fastchat实战…...
Centos、OpenEuler系统安装mysql
要在CentOS上安装MySQL并设置开机自启和root密码,请按照以下步骤进行操作: 确保您的CentOS系统已连接到Internet,并且具有管理员权限(root或sudo访问权限)。打开终端或SSH会话,使用以下命令安装MySQL&…...

如何在Win10系统上安装WSL(适用于 Linux 的 Windows 子系统)
诸神缄默不语-个人CSDN博文目录 本文介绍的方法不是唯一的安装方案,但在我的系统上可用。 文章目录 1. 视频版2. 文字版和代码3. 本文撰写过程中使用到的其他网络参考资料 1. 视频版 B站版:在Windows上安装Linux (WSL, 适用于 Linux 的 Windows 子系统…...

单片机通用学习-什么是寄存器?
什么是寄存器? 寄存器是一种特殊的存储器,主要用于存储和检查微机的状态。CPU寄存器用于存储和检查CPU的状态,具体包括计算中途数据、程序因中断或子程序分支时的返回地址、计算结果为零时的负值、计算结果为零时的信息、进位值等。 由于CP…...

【C语言】文件操作详解
文章目录 前言一、文件是什么二、文件具体介绍1.文件名2.文件类型3.文件缓冲区4.文件指针5.文件的打开和关闭 三、文件的顺序读写1.字符输入函数(fgetc)2.字符输出函数(fputc)3.文本行输入函数(fgets)4.文本…...

栈(Stack)的详解
目录 1.栈的概念 2.栈的模拟实现 1.栈的方法 2.模拟栈用(整型)数组的形式呈现 2.1栈的创建 2.2压栈 2.3栈是否为空 2.4出栈 2.5获取栈中有效元素个数 2.6获取栈顶元素 2.7完整代码实现 1.栈的概念 从上图中可以看到, Stack 继承了…...

深入了解GCC编译过程
关于Linux的编译过程,其实只需要使用gcc这个功能,gcc并非一个编译器,是一个驱动程序。其编译过程也很熟悉:预处理–编译–汇编–链接。在接触底层开发甚至操作系统开发时,我们都需要了解这么一个知识点,如何…...

leetcode 594.最长和谐子序列(滑动窗口)
⭐️ 题目描述 🌟 leetcode链接:最长和谐子序列 思路: 第一步先将数组排序,在使用滑动窗口(同向双指针),定义 left right 下标,比如这一组数 {1,3,2,2,5,2,3,7} 排序后 {1,2,2,2,3,…...
深入剖析云计算与云服务器ECS:从基础到实践
云计算已经在不断改变着我们的计算方式和业务模式,而云服务器ECS(Elastic Compute Service)作为云计算的核心组件之一,为我们提供了灵活、可扩展的计算资源。在本篇长文中,我们将从基础开始,深入探讨云计算…...

苍穹外卖技术栈
重难点详解 1、定义全局异常 2、ThreadLocal ThreadLocal 并不是一个Thread,而是Thread的一个局部变量ThreadLocal 为每一个线程提供独立的存储空间,具有线程隔离的效果,只有在线程内才能取到值,线程外则不能访问 public void …...
重新开始 杂类:C++基础
目录 1.输入输出 2 . i 与 i 3.结构体 4.二进制 1.输入输出 #include<cstdio>//cin>>,cout #include<iostream>//printf,scanf (1) cin , cout输入输出流可直接用于数字,字符 (2)scanf(&quo…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...

Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...

VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...