当前位置: 首页 > news >正文

nlp系列(7)实体识别(Bert)pytorch

模型介绍

本项目是使用Bert模型来进行文本的实体识别。

Bert模型介绍可以查看这篇文章:nlp系列(2)文本分类(Bert)pytorch_bert文本分类_牧子川的博客-CSDN博客

模型结构

Bert模型的模型结构:

数据介绍

数据网址:​​​​​​https://github.com/buppt//raw/master/data/people-relation/train.txt

实体1  实体2  关系 文本

        input_ids_list, token_type_ids_list, attention_mask_list, e1_masks_list, e2_masks_list, labels_list = [], [], [], [], [], []for instance in batch_data:# 按照batch中的最大数据长度,对数据进行padding填充input_ids_temp = instance["input_ids"]token_type_ids_temp = instance["token_type_ids"]attention_mask_temp = instance["attention_mask"]e1_masks_temp = instance["e1_masks"]e2_masks_temp = instance["e2_masks"]labels_temp = instance["labels"]# 添加到对应的list中input_ids_list.append(torch.tensor(input_ids_temp, dtype=torch.long))token_type_ids_list.append(torch.tensor(token_type_ids_temp, dtype=torch.long))attention_mask_list.append(torch.tensor(attention_mask_temp, dtype=torch.long))e1_masks_list.append(torch.tensor(e1_masks_temp, dtype=torch.long))e2_masks_list.append(torch.tensor(e2_masks_temp, dtype=torch.long))labels_list.append(labels_temp)# 使用pad_sequence函数,会将list中所有的tensor进行长度补全,补全到一个batch数据中的最大长度,补全元素为padding_valuereturn {"input_ids": pad_sequence(input_ids_list, batch_first=True, padding_value=0),"token_type_ids": pad_sequence(token_type_ids_list, batch_first=True, padding_value=0),"attention_mask": pad_sequence(attention_mask_list, batch_first=True, padding_value=0),"e1_masks": pad_sequence(e1_masks_list, batch_first=True, padding_value=0),"e2_masks": pad_sequence(e2_masks_list, batch_first=True, padding_value=0),"labels": torch.tensor(labels_list, dtype=torch.long)}

模型准备

    def forward(self, token_ids, token_type_ids, attention_mask, e1_mask, e2_mask):sequence_output, pooled_output = self.bert_model(input_ids=token_ids, token_type_ids=token_type_ids,attention_mask=attention_mask, return_dict=False)# 每个实体的所有token向量的平均值e1_h = self.entity_average(sequence_output, e1_mask)e2_h = self.entity_average(sequence_output, e2_mask)e1_h = self.activation(self.dense(e1_h))e2_h = self.activation(self.dense(e2_h))# [cls] + 实体1 + 实体2concat_h = torch.cat([pooled_output, e1_h, e2_h], dim=-1)concat_h = self.norm(concat_h)logits = self.hidden2tag(self.drop(concat_h))return logits

模型预测

输入中文句子:丁一岚与丈夫邓拓
句子中的实体1:丁一岚
句子中的实体2:邓拓
在丁一岚与丈夫邓拓中丁一岚与邓拓的关系为:夫妻


输入中文句子:丁一岚与丈夫邓拓
句子中的实体1:邓拓
句子中的实体2:丁一岚
在【丁一岚与丈夫邓拓】中【邓拓】与【丁一岚】的关系为:夫妻


输入中文句子:京德云社演出相声,演员包括郭德纲、于谦、李菁、高峰、何云伟、曹云金、刘云天、栾云平、岳云鹏等,段子包括《兵器谱》、《大西厢》、《梦中婚
句子中的实体1:郭德纲
句子中的实体2:刘云天
在【京德云社演出相声,演员包括郭德纲、于谦、李菁、高峰、何云伟、曹云金、刘云天、栾云平、岳云鹏等,段子包括《兵器谱》、《大西厢》、《梦中婚】中【郭德纲】与【刘云天】的关系为:师生


输入中文句子:在荣国府里,虽然官爵是由贾政承继,但真正主持家政的却是贾赦这一派,而且贾赦在贾母面前似乎并不得宠。
句子中的实体1:贾母
句子中的实体2:贾赦
在【在荣国府里,虽然官爵是由贾政承继,但真正主持家政的却是贾赦这一派,而且贾赦在贾母面前似乎并不得宠。】中【贾母】与【贾赦】的关系为:父母

源码获取

​​​​​​​Bert 关系识别icon-default.png?t=N7T8https://github.com/mzc421/Pytorch-NLP/tree/master/12-Bert%20%E5%85%B3%E7%B3%BB%E8%AF%86%E5%88%AB​​​​​​​

硬性的标准其实限制不了无限可能的我们,所以啊!少年们加油吧!

相关文章:

nlp系列(7)实体识别(Bert)pytorch

模型介绍 本项目是使用Bert模型来进行文本的实体识别。 Bert模型介绍可以查看这篇文章:nlp系列(2)文本分类(Bert)pytorch_bert文本分类_牧子川的博客-CSDN博客 模型结构 Bert模型的模型结构: 数据介绍 …...

Uniapp学习之从零开始写一个简单的小程序demo(新建页面,通过导航切换页面,发送请求)

先把官网文档摆在这,后面会用到的 [uniapp官网文档]: https://uniapp.dcloud.net.cn/vernacular.html# 一、开发工具准备 1-1 安装HBuilder 按照官方推荐,先装一个HBuilder 下载地址: https://www.dcloud.io/hbuilderx.html1-2 安装微信开…...

uniapp微信小程序隐私保护引导新规

1.components中新建组件PrivacyPop.vue <template><view class"privacy" v-if"showPrivacy"><view class"content"><view class"title">隐私保护指引</view><view class"des">在使用当…...

超图嵌入论文阅读2:超图神经网络

超图嵌入论文阅读2&#xff1a;超图神经网络 原文&#xff1a;Hypergraph Neural Networks ——AAAI2019&#xff08;CCF-A&#xff09; 源码&#xff1a;https://github.com/iMoonLab/HGNN 500star 概述 贡献&#xff1a;用于数据表示学习的超图神经网络 (HGNN) 框架&#xf…...

安全运营中心(SOC)技术框架

2018年曾经画过一个安全运营体系框架&#xff0c;基本思路是在基础单点技术防护体系基础上&#xff0c;围绕着动态防御、深度分析、实时检测&#xff0c;建立安全运营大数据分析平台&#xff0c;可以算作是解决方案产品的思路。 依据这个体系框架&#xff0c;当时写了《基于主动…...

并行和并发的区别

从操作系统的角度来看&#xff0c;线程是CPU分配的最小单位。 并行就是同一时刻&#xff0c;两个线程都在执行。这就要求有两个CPU去分别执行两个线程。并发就是同一时刻&#xff0c;只有一个执行&#xff0c;但是一个时间段内&#xff0c;两个线程都执行了。并发的实现依赖于…...

GPT转换工具:轻松将MBR转换为GPT磁盘

为什么需要将MBR转换为GPT&#xff1f; 众所周知&#xff0c;Windows 11已经发布很长时间了。在此期间&#xff0c;许多老用户已经从Windows 10升级到Windows 11。但有些用户仍在运行Windows 10。对于那些想要升级到Win 11的用户来说&#xff0c;他们可能不确定Win 11应该使…...

大模型参数高效微调技术原理综述(二)-BitFit、Prefix Tuning、Prompt Tuning

随着&#xff0c;ChatGPT 迅速爆火&#xff0c;引发了大模型的时代变革。然而对于普通大众来说&#xff0c;进行大模型的预训练或者全量微调遥不可及。由此&#xff0c;催生了各种参数高效微调技术&#xff0c;让科研人员或者普通开发者有机会尝试微调大模型。 因此&#xff0c…...

将conda环境打包成docker步骤

1. 第一步&#xff0c;将conda环境的配置导出到environment.yml 要获取一个Conda环境的配置文件 environment.yml&#xff0c;你可以使用以下命令从已存在的环境中导出&#xff1a; conda env export --name your_env_name > environment.yml请将 your_env_name 替换为你要…...

C# 获取Json对象中指定属性的值

在C#中获取JSON对象中指定属性的值&#xff0c;可以使用Newtonsoft.JSON库的JObject类 using Newtonsoft.Json.Linq; using System; public class Program { public static void Main(string[] args) { string json "{ Name: John, age: 30, City: New York }"; …...

【LeetCode】202. 快乐数 - hash表 / 快慢指针

目录 2023-9-5 09:56:152023-9-6 19:40:51 202. 快乐数 2023-9-5 09:56:15 关键是怎么去判断循环&#xff1a; hash表&#xff1a; 每次生成链中的下一个数字时&#xff0c;我们都会检查它是否已经在哈希集合中。 如果它不在哈希集合中&#xff0c;我们应该添加它。如果它在…...

什么是多态性?如何在面向对象编程中实现多态性?

1、什么是多态性&#xff1f;如何在面向对象编程中实现多态性&#xff1f; 多态性&#xff08;Polymorphism&#xff09;是指在同一个方法调用中&#xff0c;由于参数类型不同&#xff0c;而产生不同的行为。在面向对象编程中&#xff0c;多态性是一种重要的特性&#xff0c;它…...

【目标检测】理论篇(3)YOLOv5实现

Yolov5网络构架实现 import torch import torch.nn as nnclass SiLU(nn.Module):staticmethoddef forward(x):return x * torch.sigmoid(x)def autopad(k, pNone):if p is None:p k // 2 if isinstance(k, int) else [x // 2 for x in k] return pclass Focus(nn.Module):def …...

IDEA爪哇操作数据库

少小离家老大回,乡音无改鬓毛衰 ⒈.IDEA2018设置使用主题颜色 IDEA2018主题颜色分为三种&#xff1a;idea原始颜色&#xff0c;高亮色&#xff0c;黑色 设置方法&#xff1a;Settings–Appearance&Behavior–Appearance ⒉.mysql中&#xff0c;没有my.ini&#xff0c;只有…...

一文速学-让神经网络不再神秘,一天速学神经网络基础(七)-基于误差的反向传播

前言 思索了很久到底要不要出深度学习内容&#xff0c;毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新&#xff0c;很多坑都没有填满&#xff0c;而且现在深度学习的文章和学习课程都十分的多&#xff0c;我考虑了很久决定还是得出神经网络系列文章&#xff0c;…...

C++ 异常处理——学习记录007

1. 概念 程序中的错误分为编译时错误和运行时错误。编译时出现的错误包括关键字拼写出错、语句分号缺少、括号不匹配等&#xff0c;编译时的错误容易解决。运行时出现的错误包括无法打开文件、数组越界和无法实现指定的操作。运行时出现的错误称为异常&#xff0c;对异常的处理…...

【BIM+GIS】“BIM+”是什么? “BIM+”技术详解

对于我们日常生活影响最大的是信息化和网络化给我们的日常生活带来革命性的变化。“互联网+“在建筑行业里可以称为“BIM+”。“BIM+”"即是通过BIM与各类技术(互联网、大数据等)结合去完成不同的任务。将产品的全生命周期和全制造流程的数字化以及基于信息通信技术的模块…...

Flink算子如何限流

目录 使用方法 调用类图 内部源码 GuavaFlinkConnectorRateLimiter RateLimiter 使用方法 重写AbstractRichFunction中的open()方法,在处理数据前调用limiter.acquire(1); 调用limiter.open(getRuntimeContext())的源码,实际内部是RateLimiter,根据并行度算出subTask…...

垃圾分代收集的过程是怎样的?

垃圾分代收集是Java虚拟机(JVM)中一种常用的垃圾回收策略。该策略将堆内存分为不同的代(Generation)&#xff0c;通常分为年轻代(Young Generation)和老年代(Old Generation)。不同代的对象具有不同的生命周期和回收频率。 下面是Java中垃圾分代收集的一般过程&#xff1a; 1…...

NPM 常用命令(四)

目录 1、npm diff 1.1 描述 1.2 过滤文件 1.3 配置 diff diff-name-only diff-unified diff-ignore-all-space diff-no-prefix diff-src-prefix diff-dst-prefix diff-text global tag workspace workspaces include-workspace-root 2、npm dist-tag 2.1 常…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...