当前位置: 首页 > news >正文

代码随想录训练营第五十七天|647. 回文子串、516.最长回文子序列

 647. 回文子串

题目链接/文章讲解/视频讲解:代码随想录

1.代码展示

//647.回文子串
int countSubstrings(string s) {//step1 构建dp数组,明确dp数组的含义,dp[i][j]的含义是在下标为i和j区间内的字串是否为回文串vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));//step2 构建状态转移方程//当s[i] != s[j]时,此时必定不为回文子串//当s[i] == s[j]时,有三种情况//情况一:i = j,此时就是本身,因此必定为回文子串//情况二:i + 1 = j,此时就如aa的形式,因此也是回文子串//情况三:j > i + 1,此时当dp[i + 1][j - 1]为回文字串时,dp[i][j]才是回文子串//step3 初始化dp数组,都为false//step4 开始遍历int nResult = 0;for (int i = s.size() - 1; i >= 0; i++) {for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) {nResult++;dp[i][j] = true;}else if (dp[i + 1][j - 1]){nResult++;dp[i][j] = true;}}}}return nResult;
}

 2.本题小节

        思考:本题的重点在于对于dp[i][j]的理解,dp[i][j]的含义是在下标为i和j区间内的字串是否为回文串。构建状态转移方程,当s[i] != s[j]时,此时必定不为回文子串;当s[i] == s[j]时,有三种情况
 ,情况一,i = j,此时就是本身,因此必定为回文子串, 情况二,i + 1 = j,此时就如aa的形式,因此也是回文子串,情况三:j > i + 1,此时当dp[i + 1][j - 1]为回文字串时,dp[i][j]才是回文子串;初始化都为false,最后注意遍历顺序,先下后上,先左后右。

        基本思路:注意理解dp[i][j]的含义,按照代码的思路来即可。

516.最长回文子序列

题目链接/文章讲解/视频讲解:代码随想录

1.代码展示

//516.最长回文子序列
int longestPalindromeSubseq(string s) {//step1 构建dp数组,dp[i][j]的含义是在[i,j]下标的范围内s的最长回文子序列vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));//step2 状态转移方程//当s[i] == s[j],dp[i][j] = dp[i + 1][j - 1] + 2,//不等时,有两种情况,说明同时加入s[i],s[j]不能满足情况,分别加入s[i]和s[j]试试//则dp[i][j] = max(dp[i][j - 1], dp[i + 1][j])//step3 初始化for (int i = 0; i < s.size(); i++) {dp[i][i] = 1;}//step4 开始遍历for (int i = s.size() - 1; i >= 0; i++) {for (int j = i + 1; j < s.size(); j++) {if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;}else {dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]);}}}return dp[0][s.size() - 1];
}

 2.本题小节

        思考:明确dp数组的含义。dp[i][j]的含义是在[i,j]下标的范围内s的最长回文子序列。状态转移方程,当s[i] == s[j],dp[i][j] = dp[i + 1][j - 1] + 2,不等时,有两种情况,说明同时加入s[i],s[j]不能满足情况,分别加入s[i]和s[j]试试,则dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]),初始化时对角线都为1,根据dp数组可以得。遍历时先下后上,先左后右。

        基本思路:注意dp数组的含义,按照动态规划步骤来。

动态规划总结:代码随想录

相关文章:

代码随想录训练营第五十七天|647. 回文子串、516.最长回文子序列

647. 回文子串 题目链接/文章讲解/视频讲解&#xff1a;代码随想录 1.代码展示 //647.回文子串 int countSubstrings(string s) {//step1 构建dp数组&#xff0c;明确dp数组的含义&#xff0c;dp[i][j]的含义是在下标为i和j区间内的字串是否为回文串vector<vector<bool&…...

对线程池设置做压测

线程池代码 Configuration public class ThreadPoolConfig {// 核心线程池大小private int corePoolSize 24;// 最大可创建的线程数private int maxPoolSize 25;// 队列最大长度private int queueCapacity 100;// 线程池维护线程所允许的空闲时间private int keepAliveSeco…...

【网络通信 -- WebRTC】项目实战记录 -- mediasoup android 适配 webrtc m94

【网络通信 -- WebRTC】项目实战记录 -- mediasoup android 适配 webrtc m94 【1】下载并配置 depot_tools 下载 depot_tools git clone https://chromium.googlesource.com/chromium/tools/depot_tools.git编辑 ~/.bashrc 将 depot_tools 添加到路径中 vim ~/.bashrc export…...

【力扣周赛】第 357 场周赛(⭐反悔贪心)

文章目录 竞赛链接Q1&#xff1a;6925. 故障键盘解法1——直接模拟解法2——双端队列 Q2&#xff1a;6953. 判断是否能拆分数组&#xff08;贪心&#xff09;Q3&#xff1a;2812. 找出最安全路径⭐解法1——多源BFS瓶颈路模型&#xff1f;解法2——多源BFS 倒序枚举答案 并查…...

css重置

css 重置 CSS 重置的主要目标是确保浏览器之间的一致性&#xff0c;并撤消所有默认样式&#xff0c;创建一个空白板。 如今&#xff0c;主流浏览器都实现了css规范&#xff0c;在布局或间距方面没有太大差异。但是通过自定义 CSS 重置&#xff0c;也可以改善用户体验和提高开…...

tcpdump相关

Linux内核角度分析tcpdump原理&#xff08;一&#xff09;Linux内核角度分析tcpdump原理&#xff08;二&#xff09;...

MFC新建内部消息

提示&#xff1a;记录一下MFC新建内部消息的成功过程 文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 先说一下基本情况&#xff0c;因为要在mapview上增加一个显示加载时间的功能。然后发现是要等加载完再显示时间&#xff0c;显示在主…...

linux查找目录

要在Linux中查找目录&#xff0c;可以使用find命令。下面是查询目录的几个示例&#xff1a; 1,查找当前目录下所有子目录&#xff1a; find . -type d 2,在指定路径下查找目录&#xff1a; find /path/to/directory -type d 3,查找以特定名称开头的目录&#xff1a; find . -t…...

机器学习:可解释学习

文章目录 可解释学习为什么需要可解释机器学习可解释还是强模型可解释学习的目标可解释机器学习Local ExplanationGlobal Explanation 可解释学习 神马汉斯&#xff0c;只有在有人看的时候能够答对。 为什么需要可解释机器学习 贷款&#xff0c;医疗需要给出理由&#xff0c;让…...

UE5- c++ websocket里实现调用player里的方法

# UGameInstance里直接调用 获取到引用了&#xff0c;就可以自然的调用。忽略 # UGameInstance里间接调用&#xff0c;通过代理调用 前置已经添加了websocket,具体步骤参考&#xff0c;链接在UWebSocketGameInstance.h里新增代理&#xff0c;并在链接成功后进行绑定。 #pragma…...

线性代数的学习和整理18:什么是维度,什么是秩?秩的各种定理秩的计算 (计算部分未完成)

目录 0 问题引出&#xff1a;什么是秩&#xff1f; 概念备注&#xff1a; 1 先厘清&#xff1a;什么是维数&#xff1f; 1.1 真实世界的维度数 1.2 向量空间的维数 1.2.1 向量空间&#xff0c;就是一组最大线性无关的向量组/基张成的空间 1.3 向量α的维数 1.3.1 向量的…...

Centos 6.5 升级到Centos7指导手册

一、背景 某业务系统因建设较早&#xff0c;使用的OS比较过时&#xff0c;还是centos6.5的系统&#xff0c;因国产化需要&#xff0c;需将该系统升级到BClinux 8.6&#xff0c;但官方显示不支持centos 6.x升级到8&#xff0c;需先将centos6.5升级到centos7的最新版&#xff0c…...

详解python中的映射类型---字典

概述 映射类型是“键-值”数据项的组合&#xff0c;每个元素是一个键值对&#xff0c;即元素是&#xff08;key&#xff0c;value&#xff09;&#xff0c;元素之间是无序的。键值对&#xff08;key&#xff0c;value&#xff09;是一种二元关系&#xff0c;源于属性和值的映射…...

gdal求矢量图形的形心

gdal求矢量图形的形心 #include "gdal_priv.h" #include "ogrsf_frmts.h"int main() {OGRRegisterAll();OGRPolygon* square_1 new OGRPolygon();OGRLinearRing* ring_1 new OGRLinearRing();// 添加 square_1 的点ring_1->addPoint(0, 0);ring_1-&g…...

<深度学习基础> Batch Normalization

Batch Normalization批归一化 BN优点 减少了人为选择参数。在某些情况下可以取消dropout和L2正则项参数&#xff0c;或者采取更小的L2正则项约束参数&#xff1b;减少了对学习率的要求。现在我们可以使用初始很大的学习率或者选择了较小的学习率&#xff0c;算法也能够快速训…...

Ubuntu yolov5 环境配置

查看Ubuntu版本 $ cat /proc/version Linux version 5.4.0-150-generic (builddbos03-amd64-012) (gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)) #167~18.04.1-Ubuntu SMP Wed May 24 00:51:42 UTC 2023虚拟机磁盘扩容 因为在环境搭建过程中遇到了磁盘空间不足的问题&a…...

【自执行闭包JS逆向】某网站登录MD5加密分析

文章目录 一、写在前面二、抓包分析三、加密函数分析 一、写在前面 最近工作比较忙&#xff0c;不过还是在督促自己利用有限的时间学习更新一些技术文章。互联网这个行业大家目前也都知道是非常内卷的&#xff0c;所有大家在工作之余养成良好的自主学习习惯是非常好的&#xff…...

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明 目录 Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明 一、简单介绍 二、安装文件相关说明 三、界面的简单说明 四、prompt 的一些语法简单说明 1、Prompt &#xff1a;正向提示词 &am…...

【Linux】- 一文秒懂shell编程

shell编程 1.1 Shell 是什么1.2 Shell 脚本的执行方式1.3 编写第一个 Shell 脚本2.1 Shell 的变量2.2 shell 变量的定义2.3 设置环境变量3.1 位置参数变量3.2 预定义变量4.1 运算符4.2 条件判断5.1 流程控制5.2 case 语句5.3 for 循环5.4 while 循环5.5 read基本语法6.1函数6.2…...

CentOS下多网卡绑定多IP段时导致只有一个会通的问题解决

CentOS下多网卡绑定多IP段时导致只有一个会通的问题解决 虚拟机配置多个网络地址&#xff0c;结果同时只能有一个ip是通的&#xff0c; 原因&#xff1a;Linux默认开启了反向路由检查导致的&#xff0c;比如说外面访问eth0的网卡&#xff0c;而网关在eth1上&#xff0c;又或者从…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...