LGB的两种写法
方法一
import lightgbm as lgb
import pandas as pd
from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import accuracy_score# 读取训练集和测试集数据
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')# 分割特征和标签
X_train = train_data.drop('label', axis=1)
y_train = train_data['label']# 创建 LightGBM 数据集
train_dataset = lgb.Dataset(X_train, label=y_train)# 设置模型参数
params = {'boosting_type': 'gbdt','objective': 'binary','metric': 'binary_logloss','num_leaves': 31,'learning_rate': 0.05
}# 定义 k-fold 交叉验证
kfold = KFold(n_splits=5, shuffle=True, random_state=42)# 用于存储每个 fold 的预测结果
test_predictions = []# 进行 k-fold 交叉验证
for train_index, val_index in kfold.split(X_train):# 划分训练集和验证集X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[val_index]y_train_fold, y_val_fold = y_train.iloc[train_index], y_train.iloc[val_index]# 创建当前 fold 的 LightGBM 数据集train_fold_dataset = lgb.Dataset(X_train_fold, label=y_train_fold)val_fold_dataset = lgb.Dataset(X_val_fold, label=y_val_fold)# 训练模型model = lgb.train(params, train_fold_dataset, num_boost_round=100, valid_sets=[val_fold_dataset], early_stopping_rounds=10, verbose_eval=10)# 在验证集上进行预测val_predictions = model.predict(X_val_fold, num_iteration=model.best_iteration)# 将当前 fold 的预测结果加入列表test_predictions.append(val_predictions)# 计算 k-fold 预测结果的平均值
final_predictions = sum(test_predictions) / len(test_predictions)# 二分类问题的阈值处理
final_predictions = (final_predictions > 0.5).astype(int)# 在测试集上进行预测
X_test = test_data # 假设测试集特征和训练集格式相同
y_test_predictions = model.predict(X_test, num_iteration=model.best_iteration)# 二分类问题的阈值处理
y_test_predictions = (y_test_predictions > 0.5).astype(int)# 输出测试集预测结果
print(y_test_predictions)
方法二
import lightgbm as lgb
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score# 读取训练集和测试集数据
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')# 分割特征和标签
X_train = train_data.drop('label', axis=1)
y_train = train_data['label']# 定义模型参数
params = {'boosting_type': 'gbdt','objective': 'binary','metric': 'binary_logloss','num_leaves': 31,'learning_rate': 0.05
}# 定义 k-fold 交叉验证
kfold = KFold(n_splits=5, shuffle=True, random_state=42)# 用于存储每个 fold 的预测结果
test_predictions = []# 进行 k-fold 交叉验证
for train_index, val_index in kfold.split(X_train):# 划分训练集和验证集X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[val_index]y_train_fold, y_val_fold = y_train.iloc[train_index], y_train.iloc[val_index]# 创建 LightGBM 模型model = lgb.LGBMClassifier(**params)# 训练模型model.fit(X_train_fold, y_train_fold)# 在验证集上进行预测val_predictions = model.predict(X_val_fold)# 将当前 fold 的预测结果加入列表test_predictions.append(val_predictions)# 计算 k-fold 预测结果的平均值
final_predictions = sum(test_predictions) / len(test_predictions)# 二分类问题的阈值处理
final_predictions = (final_predictions > 0.5).astype(int)# 在测试集上进行预测
X_test = test_data # 假设测试集特征和训练集格式相同
y_test_predictions = model.predict(X_test)# 二分类问题的阈值处理
y_test_predictions = (y_test_predictions > 0.5).astype(int)# 输出测试集预测结果
print(y_test_predictions)
相关文章:
LGB的两种写法
方法一 import lightgbm as lgb import pandas as pd from sklearn.model_selection import train_test_split, KFold from sklearn.metrics import accuracy_score# 读取训练集和测试集数据 train_data pd.read_csv(train.csv) test_data pd.read_csv(test.csv)# 分割特征和…...

【Unity的HDRP下ShaderGraph实现权重缩放全息投影_(内附源码)】
实现权重缩放全息投影 效果如下 效果如下 顶点位置偏移 链接: 提取码:1234...

透视俄乌网络战之二:Conti勒索软件集团(上)
透视俄乌网络战之一:数据擦除软件 Conti勒索软件集团(上) 1. Conti简介2. 组织架构3. 核心成员4. 招募途径5. 工作薪酬6. 未来计划参考 1. Conti简介 Conti于2019年首次被发现,现已成为网络世界中最危险的勒索软件之一࿰…...
【华为OD机试python】拔河比赛【2023 B卷|100分】
【华为OD机试】-真题 !!点这里!! 【华为OD机试】真题考点分类 !!点这里 !! 题目描述 公司最近准备进行拔河比赛,需要在全部员工中进行挑选。 选拔的规则如下: 按照身高优先、体重次优先的方式准备比赛阵容; 规定参赛的队伍派出10名选手。 请实现一个选拔队员的小程序。 输…...
05 CNN 猴子类别检测
一、数据集下载 kaggle数据集[10 monkey] 二、数据集准备 2.1 指定路径 from tensorflow import keras import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plttrain_dir /newdisk/darren_pty/CNN/ten_monkey/training/ valid_d…...

【C#】关于Array.Copy 和 GC
关于Array.Copy 和 GC //一个简单的 数组copy 什么情况下会触发GC呢[ReliabilityContract(Consistency.MayCorruptInstance, Cer.MayFail)]public static void Copy(Array sourceArray,long sourceIndex,Array destinationArray,long destinationIndex,long length);当源和目…...
Vue前端框架08 Vue框架简介、VueAPI风格、模板语法、事件处理、数组变化侦测
目录 一、Vue框架1.1渐进式框架1.2 Vue的版本 二、VueAPI的风格三、Vue开发准备工作四、模板语法文本插值属性绑定条件渲染列表渲染key管理状态 四、事件处理定义事件事件参数事件修饰符 五、数组变化侦测 一、Vue框架 渐进式JavaScript框架,易学易用,性…...
WebStorm使用PlantUML
虽然 WebStorm 没有官方的 PlantUML 插件,但我们可以使用第三方插件 PlantUML Integration 来实现在 WebStorm 中使用 PlantUML。 以下是使用 PlantUML Integration 插件,在 WebStorm 中设计一个 Vue 模块的步骤: 安装 PlantUML Integratio…...
Python做批处理,给安卓设备安装应用和传输图片
场景:几台新安卓平板过来了,需要安4个应用并复制4张图片。手工操作其实也未尝不可,但是能自动化起来,岂不是美哉。 python调用系统命令,我选用了os.system,最简单粗暴,也能有回显,就…...
如何获取springboot中所有的bean
代码 Component public class TestS {Autowiredprivate Map<String, Object> allBean Maps.newConcurrentMap();public void testA(){System.out.println("测试下");}}这段代码是一个使用 Spring Framework 的依赖注入(DI)功能的示例。…...

大数据技术之Hadoop:HDFS存储原理篇(五)
目录 一、原理介绍 1.1 Block块 1.2 副本机制 二、fsck命令 2.1 设置默认副本数量 2.2 临时设置文件副本大小 2.3 fsck命令检查文件的副本数 2.4 block块大小的配置 三、NameNode元数据 3.1 NameNode作用 3.2 edits文件 3.3 FSImage文件 3.4 元素据合并控制参数 …...

用C语言实现牛顿摆控制台动画
题目 用C语言实现牛顿摆动画,模拟小球的运动,如图所示 拆解 通过控制台API定位输出小球运动的只是2边小球,中间小球不运动,只需要固定位置输出左边小球上升下降时,X、Y轴增量一致。右边小球上升下降时,X、…...

如何自己开发一个前端监控SDK
最近在负责团队前端监控系统搭建的任务。因为我们公司有统一的日志存储平台、日志清洗平台和基于 Grafana 搭建的可视化看板,就剩日志的采集和上报需要自己实现了,所以决定封装一个前端监控 SDK 来完成日志的采集和上报。 架构设计 因为想着以后有机会…...

node.js笔记
首先:浏览器能执行 JS 代码,依靠的是内核中的 V8 引擎(C 程序) 其次:Node.js 是基于 Chrome V8 引擎进行封装(运行环境) 区别:都支持 ECMAScript 标准语法,Node.js 有独立…...

mysql 增量备份与恢复使用详解
目录 一、前言 二、数据备份策略 2.1 全备 2.2 增量备份 2.3 差异备份 三、mysql 增量备份概述 3.1 增量备份实现原理 3.1.1 基于日志的增量备份 3.1.2 基于时间戳的增量备份 3.2 增量备份常用实现方式 3.2.1 基于mysqldump增量备份 3.2.2 基于第三方备份工具进行增…...

9月5日上课内容 第一章 NoSQL之Redis配置与优化
本章结构 关系型数据库和非关系型数据库 概念介绍 ●关系型数据库: 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。 SQL 语句(标准数据查询语言)就是…...

QT 第四天
一、设置一个闹钟 .pro QT core gui texttospeechgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecated (the exact warnings # depend…...

nrf52832 GPIO输入输出设置
LED_GPIO #define LED_START 17 #define LED_0 17 #define LED_1 18 #define LED_2 19 #define LED_3 20 #define LED_STOP 20设置位输出模式: nrf_gpio_cfg_output(LED_0); 输出高电平:nrf_gpio_pin_set(LED_0); 输…...

MyBatis 动态 SQL 实践教程
一、MyBatis动态 sql 是什么 动态 SQL 是 MyBatis 的强大特性之一。在 JDBC 或其它类似的框架中,开发人员通常需要手动拼接 SQL 语句。根据不同的条件拼接 SQL 语句是一件极其痛苦的工作。例如,拼接时要确保添加了必要的空格,还要注意去掉列…...

CSS 斜条纹进度条
效果: 代码: html: <div class"active-line flex"><!-- lineWidth:灰色背景 --><div class"bg-line"><div v-for"n in 30" class"gray"></div></div><div…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...