当前位置: 首页 > news >正文

LGB的两种写法

方法一

import lightgbm as lgb
import pandas as pd
from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import accuracy_score# 读取训练集和测试集数据
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')# 分割特征和标签
X_train = train_data.drop('label', axis=1)
y_train = train_data['label']# 创建 LightGBM 数据集
train_dataset = lgb.Dataset(X_train, label=y_train)# 设置模型参数
params = {'boosting_type': 'gbdt','objective': 'binary','metric': 'binary_logloss','num_leaves': 31,'learning_rate': 0.05
}# 定义 k-fold 交叉验证
kfold = KFold(n_splits=5, shuffle=True, random_state=42)# 用于存储每个 fold 的预测结果
test_predictions = []# 进行 k-fold 交叉验证
for train_index, val_index in kfold.split(X_train):# 划分训练集和验证集X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[val_index]y_train_fold, y_val_fold = y_train.iloc[train_index], y_train.iloc[val_index]# 创建当前 fold 的 LightGBM 数据集train_fold_dataset = lgb.Dataset(X_train_fold, label=y_train_fold)val_fold_dataset = lgb.Dataset(X_val_fold, label=y_val_fold)# 训练模型model = lgb.train(params, train_fold_dataset, num_boost_round=100, valid_sets=[val_fold_dataset], early_stopping_rounds=10, verbose_eval=10)# 在验证集上进行预测val_predictions = model.predict(X_val_fold, num_iteration=model.best_iteration)# 将当前 fold 的预测结果加入列表test_predictions.append(val_predictions)# 计算 k-fold 预测结果的平均值
final_predictions = sum(test_predictions) / len(test_predictions)# 二分类问题的阈值处理
final_predictions = (final_predictions > 0.5).astype(int)# 在测试集上进行预测
X_test = test_data  # 假设测试集特征和训练集格式相同
y_test_predictions = model.predict(X_test, num_iteration=model.best_iteration)# 二分类问题的阈值处理
y_test_predictions = (y_test_predictions > 0.5).astype(int)# 输出测试集预测结果
print(y_test_predictions)

方法二

import lightgbm as lgb
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score# 读取训练集和测试集数据
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')# 分割特征和标签
X_train = train_data.drop('label', axis=1)
y_train = train_data['label']# 定义模型参数
params = {'boosting_type': 'gbdt','objective': 'binary','metric': 'binary_logloss','num_leaves': 31,'learning_rate': 0.05
}# 定义 k-fold 交叉验证
kfold = KFold(n_splits=5, shuffle=True, random_state=42)# 用于存储每个 fold 的预测结果
test_predictions = []# 进行 k-fold 交叉验证
for train_index, val_index in kfold.split(X_train):# 划分训练集和验证集X_train_fold, X_val_fold = X_train.iloc[train_index], X_train.iloc[val_index]y_train_fold, y_val_fold = y_train.iloc[train_index], y_train.iloc[val_index]# 创建 LightGBM 模型model = lgb.LGBMClassifier(**params)# 训练模型model.fit(X_train_fold, y_train_fold)# 在验证集上进行预测val_predictions = model.predict(X_val_fold)# 将当前 fold 的预测结果加入列表test_predictions.append(val_predictions)# 计算 k-fold 预测结果的平均值
final_predictions = sum(test_predictions) / len(test_predictions)# 二分类问题的阈值处理
final_predictions = (final_predictions > 0.5).astype(int)# 在测试集上进行预测
X_test = test_data  # 假设测试集特征和训练集格式相同
y_test_predictions = model.predict(X_test)# 二分类问题的阈值处理
y_test_predictions = (y_test_predictions > 0.5).astype(int)# 输出测试集预测结果
print(y_test_predictions)

相关文章:

LGB的两种写法

方法一 import lightgbm as lgb import pandas as pd from sklearn.model_selection import train_test_split, KFold from sklearn.metrics import accuracy_score# 读取训练集和测试集数据 train_data pd.read_csv(train.csv) test_data pd.read_csv(test.csv)# 分割特征和…...

【Unity的HDRP下ShaderGraph实现权重缩放全息投影_(内附源码)】

实现权重缩放全息投影 效果如下 效果如下 顶点位置偏移 链接: 提取码:1234...

透视俄乌网络战之二:Conti勒索软件集团(上)

透视俄乌网络战之一:数据擦除软件 Conti勒索软件集团(上) 1. Conti简介2. 组织架构3. 核心成员4. 招募途径5. 工作薪酬6. 未来计划参考 1. Conti简介 Conti于2019年首次被发现,现已成为网络世界中最危险的勒索软件之一&#xff0…...

【华为OD机试python】拔河比赛【2023 B卷|100分】

【华为OD机试】-真题 !!点这里!! 【华为OD机试】真题考点分类 !!点这里 !! 题目描述 公司最近准备进行拔河比赛,需要在全部员工中进行挑选。 选拔的规则如下: 按照身高优先、体重次优先的方式准备比赛阵容; 规定参赛的队伍派出10名选手。 请实现一个选拔队员的小程序。 输…...

05 CNN 猴子类别检测

一、数据集下载 kaggle数据集[10 monkey] 二、数据集准备 2.1 指定路径 from tensorflow import keras import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plttrain_dir /newdisk/darren_pty/CNN/ten_monkey/training/ valid_d…...

【C#】关于Array.Copy 和 GC

关于Array.Copy 和 GC //一个简单的 数组copy 什么情况下会触发GC呢[ReliabilityContract(Consistency.MayCorruptInstance, Cer.MayFail)]public static void Copy(Array sourceArray,long sourceIndex,Array destinationArray,long destinationIndex,long length);当源和目…...

Vue前端框架08 Vue框架简介、VueAPI风格、模板语法、事件处理、数组变化侦测

目录 一、Vue框架1.1渐进式框架1.2 Vue的版本 二、VueAPI的风格三、Vue开发准备工作四、模板语法文本插值属性绑定条件渲染列表渲染key管理状态 四、事件处理定义事件事件参数事件修饰符 五、数组变化侦测 一、Vue框架 渐进式JavaScript框架,易学易用,性…...

WebStorm使用PlantUML

虽然 WebStorm 没有官方的 PlantUML 插件,但我们可以使用第三方插件 PlantUML Integration 来实现在 WebStorm 中使用 PlantUML。 以下是使用 PlantUML Integration 插件,在 WebStorm 中设计一个 Vue 模块的步骤: 安装 PlantUML Integratio…...

Python做批处理,给安卓设备安装应用和传输图片

场景:几台新安卓平板过来了,需要安4个应用并复制4张图片。手工操作其实也未尝不可,但是能自动化起来,岂不是美哉。 python调用系统命令,我选用了os.system,最简单粗暴,也能有回显,就…...

如何获取springboot中所有的bean

代码 Component public class TestS {Autowiredprivate Map<String, Object> allBean Maps.newConcurrentMap();public void testA(){System.out.println("测试下");}}这段代码是一个使用 Spring Framework 的依赖注入&#xff08;DI&#xff09;功能的示例。…...

大数据技术之Hadoop:HDFS存储原理篇(五)

目录 一、原理介绍 1.1 Block块 1.2 副本机制 二、fsck命令 2.1 设置默认副本数量 2.2 临时设置文件副本大小 2.3 fsck命令检查文件的副本数 2.4 block块大小的配置 三、NameNode元数据 3.1 NameNode作用 3.2 edits文件 3.3 FSImage文件 3.4 元素据合并控制参数 …...

用C语言实现牛顿摆控制台动画

题目 用C语言实现牛顿摆动画&#xff0c;模拟小球的运动&#xff0c;如图所示 拆解 通过控制台API定位输出小球运动的只是2边小球&#xff0c;中间小球不运动&#xff0c;只需要固定位置输出左边小球上升下降时&#xff0c;X、Y轴增量一致。右边小球上升下降时&#xff0c;X、…...

如何自己开发一个前端监控SDK

最近在负责团队前端监控系统搭建的任务。因为我们公司有统一的日志存储平台、日志清洗平台和基于 Grafana 搭建的可视化看板&#xff0c;就剩日志的采集和上报需要自己实现了&#xff0c;所以决定封装一个前端监控 SDK 来完成日志的采集和上报。 架构设计 因为想着以后有机会…...

node.js笔记

首先&#xff1a;浏览器能执行 JS 代码&#xff0c;依靠的是内核中的 V8 引擎&#xff08;C 程序&#xff09; 其次&#xff1a;Node.js 是基于 Chrome V8 引擎进行封装&#xff08;运行环境&#xff09; 区别&#xff1a;都支持 ECMAScript 标准语法&#xff0c;Node.js 有独立…...

mysql 增量备份与恢复使用详解

目录 一、前言 二、数据备份策略 2.1 全备 2.2 增量备份 2.3 差异备份 三、mysql 增量备份概述 3.1 增量备份实现原理 3.1.1 基于日志的增量备份 3.1.2 基于时间戳的增量备份 3.2 增量备份常用实现方式 3.2.1 基于mysqldump增量备份 3.2.2 基于第三方备份工具进行增…...

9月5日上课内容 第一章 NoSQL之Redis配置与优化

本章结构 关系型数据库和非关系型数据库 概念介绍 ●关系型数据库&#xff1a; 关系型数据库是一个结构化的数据库&#xff0c;创建在关系模型&#xff08;二维表格模型&#xff09;基础上&#xff0c;一般面向于记录。 SQL 语句&#xff08;标准数据查询语言&#xff09;就是…...

QT 第四天

一、设置一个闹钟 .pro QT core gui texttospeechgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecated (the exact warnings # depend…...

nrf52832 GPIO输入输出设置

LED_GPIO #define LED_START 17 #define LED_0 17 #define LED_1 18 #define LED_2 19 #define LED_3 20 #define LED_STOP 20设置位输出模式&#xff1a; nrf_gpio_cfg_output(LED_0); 输出高电平:nrf_gpio_pin_set(LED_0); 输…...

MyBatis 动态 SQL 实践教程

一、MyBatis动态 sql 是什么 动态 SQL 是 MyBatis 的强大特性之一。在 JDBC 或其它类似的框架中&#xff0c;开发人员通常需要手动拼接 SQL 语句。根据不同的条件拼接 SQL 语句是一件极其痛苦的工作。例如&#xff0c;拼接时要确保添加了必要的空格&#xff0c;还要注意去掉列…...

CSS 斜条纹进度条

效果&#xff1a; 代码&#xff1a; html: <div class"active-line flex"><!-- lineWidth&#xff1a;灰色背景 --><div class"bg-line"><div v-for"n in 30" class"gray"></div></div><div…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

6.9-QT模拟计算器

源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...

大模型真的像人一样“思考”和“理解”吗?​

Yann LeCun 新研究的核心探讨&#xff1a;大语言模型&#xff08;LLM&#xff09;的“理解”和“思考”方式与人类认知的根本差异。 核心问题&#xff1a;大模型真的像人一样“思考”和“理解”吗&#xff1f; 人类的思考方式&#xff1a; 你的大脑是个超级整理师。面对海量信…...