当前位置: 首页 > news >正文

【考研数学】线性代数第五章 —— 特征值和特征向量(3,矩阵对角化理论)

文章目录

  • 引言
  • 三、矩阵对角化理论
    • 3.1 一般矩阵的相似对角化
    • 3.2 实对称矩阵的相似对角化
      • 3.2.1 实对称矩阵相似对角化定理
      • 3.2.2 实对称矩阵相似对角化过程
  • 写在最后


引言

承接前文,我们来看看矩阵的对角化理论。

我们前面提到对角化是在矩阵相似那里,若存在可逆矩阵 P P P ,使得 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ ,其中 Λ \Lambda Λ 为对角矩阵,则称 A A A 可以相似对角化。


三、矩阵对角化理论

3.1 一般矩阵的相似对角化

A \pmb{A} A n n n 阶矩阵,其特征值为 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn ,若存在可逆矩阵 P \pmb{P} P ,使得 P − 1 A P = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] , \pmb{P}^{-1}\pmb{AP}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, P1AP= λ1000λ2000λn , 称矩阵 A \pmb{A} A相似对角化,或 A \pmb{A} A 可对角化,或与对角矩阵相似。

第一步: 由特征方程 ∣ λ E − A ∣ = 0 |\lambda\pmb{E}-\pmb{A}|=0 λEA=0 ,求出矩阵 A \pmb{A} A 的特征值 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn ;

第二步: 求齐次线性方程组 ( λ i E − A ) X = 0 ( 1 ≤ i ≤ n ) (\lambda_i\pmb{E}-\pmb{A})\pmb{X}=\pmb{0}(1\leq i \leq n) (λiEA)X=0(1in) 的基础解系,进而求出矩阵 A \pmb{A} A 的线性无关的特征向量 α 1 , α 2 , ⋯ , α m \pmb{\alpha_1,\alpha_2,\cdots,\alpha_m} α1,α2,,αm

回忆一下:
1.设 r ( A ) = r < n r(A)=r<n r(A)=r<n ,则 A X = 0 \pmb{AX=0} AX=0 所有解构成的解向量组的极大线性无关组称为方程组 A X = 0 \pmb{AX=0} AX=0 的一个基础解系。基础解系中所含有的线性无关的解向量的个数为 ( n − r ) (n-r) (nr) 个。具体求解方法见方程组那一篇文章,传松门 。
2.上一篇文章有定理 4:不同特征值对应的特征向量线性无关。

第三步:

(一)若 m = n m=n m=n ,则矩阵 A \pmb{A} A 可相似对角化,对角化过程如下:

有定理 5:设 A \pmb{A} A n n n 阶矩阵,则 A \pmb{A} A 可相似对角化(或与对角矩阵相似)的充分必要条件是 A \pmb{A} A n n n 个线性无关的特征向量。

P = ( α 1 , α 2 , ⋯ , α n ) \pmb{P}=(\pmb{\alpha_1,\alpha_2,\cdots,\alpha_n}) P=(α1,α2,,αn) ,显然 P \pmb{P} P 可逆。

列向量组线性无关,则矩阵满秩,自然是可逆的。

A α 1 = λ 1 α 1 , A α 2 = λ 2 α 2 , ⋯ , A α n = λ n α n \pmb{A\alpha_1}=\lambda_1\pmb{\alpha_1},\pmb{A\alpha_2}=\lambda_2\pmb{\alpha_2},\cdots,\pmb{A\alpha_n}=\lambda_n\pmb{\alpha_n} Aα1=λ1α1,Aα2=λ2α2,,Aαn=λnαn 得: A P = ( A α 1 , A α 2 , ⋯ , A α n ) = ( λ 1 α 1 , λ 2 α 2 , ⋯ , λ n α n ) = P [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] , \pmb{AP}=(\pmb{A\alpha_1,A\alpha_2,\cdots,A\alpha_n})=(\lambda_1\pmb{\alpha_1},\lambda_2\pmb{\alpha_2},\cdots,\lambda_n\pmb{\alpha_n})=\pmb{P}\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, AP=(Aα1,Aα2,,Aαn)=(λ1α1,λ2α2,,λnαn)=P λ1000λ2000λn , 两边同时左乘以 P − 1 \pmb{P^{-1}} P1 ,有 P − 1 A P = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] . \pmb{P}^{-1}\pmb{AP}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}. P1AP= λ1000λ2000λn .
(二)若 m < n m<n m<n ,则矩阵 A \pmb{A} A 不可相似对角化。

3.2 实对称矩阵的相似对角化

3.2.1 实对称矩阵相似对角化定理

定理 1 —— 若 A T = A \pmb{A}^T=\pmb{A} AT=A ,则 A \pmb{A} A 一定可以相似对角化。

定理 2 —— 设 A T = A \pmb{A}^T=\pmb{A} AT=A ,则存在正交矩阵 Q \pmb{Q} Q ,使得 Q T A Q = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] . \pmb{Q}^T\pmb{AQ}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}. QTAQ= λ1000λ2000λn .

3.2.2 实对称矩阵相似对角化过程

第一步: 由特征方程 ∣ λ E − A ∣ = 0 |\lambda\pmb{E}-\pmb{A}|=0 λEA=0 ,求出矩阵 A \pmb{A} A 的特征值 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn ;

第二步: 求齐次线性方程组 ( λ i E − A ) X = 0 ( 1 ≤ i ≤ n ) (\lambda_i\pmb{E}-\pmb{A})\pmb{X}=\pmb{0}(1\leq i \leq n) (λiEA)X=0(1in) 的基础解系,进而求出矩阵 A \pmb{A} A 的线性无关的特征向量 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn

第三步:

(一)找可逆矩阵 P \pmb{P} P ,按照上述一般矩阵对角化过程进行:

P = ( α 1 , α 2 , ⋯ , α n ) \pmb{P}=(\pmb{\alpha_1,\alpha_2,\cdots,\alpha_n}) P=(α1,α2,,αn) ,显然 P \pmb{P} P 可逆。

A α 1 = λ 1 α 1 , A α 2 = λ 2 α 2 , ⋯ , A α n = λ n α n \pmb{A\alpha_1}=\lambda_1\pmb{\alpha_1},\pmb{A\alpha_2}=\lambda_2\pmb{\alpha_2},\cdots,\pmb{A\alpha_n}=\lambda_n\pmb{\alpha_n} Aα1=λ1α1,Aα2=λ2α2,,Aαn=λnαn 得: A P = ( A α 1 , A α 2 , ⋯ , A α n ) = ( λ 1 α 1 , λ 2 α 2 , ⋯ , λ n α n ) = P [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] , \pmb{AP}=(\pmb{A\alpha_1,A\alpha_2,\cdots,A\alpha_n})=(\lambda_1\pmb{\alpha_1},\lambda_2\pmb{\alpha_2},\cdots,\lambda_n\pmb{\alpha_n})=\pmb{P}\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, AP=(Aα1,Aα2,,Aαn)=(λ1α1,λ2α2,,λnαn)=P λ1000λ2000λn , 两边同时左乘以 P − 1 \pmb{P^{-1}} P1 ,有 P − 1 A P = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] . \pmb{P}^{-1}\pmb{AP}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}. P1AP= λ1000λ2000λn .
(二)找正交矩阵 Q \pmb{Q} Q ,使得 Q T A Q \pmb{Q}^T\pmb{AQ} QTAQ 为对角矩阵的过程如下:

(1)将 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 进行施密特正交化为 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,,βn

(2)将 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,,βn 规范化为 γ 1 , γ 2 , ⋯ , γ n \pmb{\gamma_1,\gamma_2,\cdots,\gamma_n} γ1,γ2,,γn 。令 Q = ( γ 1 , γ 2 , ⋯ , γ n ) \pmb{Q=(\gamma_1,\gamma_2,\cdots,\gamma_n}) Q=(γ1,γ2,,γn) ,显然 Q \pmb{Q} Q 为正交矩阵。实对称矩阵特征向量进行施密特正交化后,仍然为特征向量,因此有 A γ 1 = λ 1 γ 1 , A γ 2 = λ 2 γ 2 , ⋯ , A γ n = λ n γ n \pmb{A\gamma_1}=\lambda_1\pmb{\gamma_1},\pmb{A\gamma_2}=\lambda_2\pmb{\gamma_2},\cdots,\pmb{A\gamma_n}=\lambda_n\pmb{\gamma_n} Aγ1=λ1γ1,Aγ2=λ2γ2,,Aγn=λnγn 得: A Q = Q [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] , \pmb{AQ}=\pmb{Q}\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, AQ=Q λ1000λ2000λn , 两边同时左乘以 Q T \pmb{Q^{T}} QT ,有 Q T A Q = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] . \pmb{Q}^{T}\pmb{AQ}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}. QTAQ= λ1000λ2000λn .

一般矩阵,不一定能相似对角化,要求有 n n n 个线性无关的特征向量才可以相似对角化。
实对称矩阵的不同特征值对应的特征向量本来就是正交的,之所以还要正交规范化,是为了求一个正交矩阵。

下面是一些笔记注解:

  1. 若矩阵 A \pmb{A} A 的特征值都是单值,则 A \pmb{A} A 一定可以相似对角化。
  2. A \pmb{A} A 为实对称矩阵,则 A \pmb{A} A 一定可以相似对角化。
  3. n n n 阶矩阵 A \pmb{A} A n n n 个线性无关的特征向量,则 A \pmb{A} A 一定可以相似对角化。
  4. 若矩阵 A \pmb{A} A 的每个特征值的重数与其对应的线性无关的特征向量的个数相同时, A \pmb{A} A 一定可以相似对角化。
  5. A \pmb{A} A 至少有一个特征值,其重数与其对应的线性无关的特征向量的个数不同时, A \pmb{A} A 一定不能相似对角化。
  6. A \pmb{A} A 不是实对称矩阵,则 A \pmb{A} A 在相似对角化的过程中,不可对特征向量进行正交规范化。因为有可能正交规范后就不是特征向量了。

写在最后

这一块内容刚接触可太费头脑了,而且一定是需要大量练习题目的。

那到此,关于特征值和特征向量的理论部分告一段落了,最后只剩下一个二次型了。

相关文章:

【考研数学】线性代数第五章 —— 特征值和特征向量(3,矩阵对角化理论)

文章目录 引言三、矩阵对角化理论3.1 一般矩阵的相似对角化3.2 实对称矩阵的相似对角化3.2.1 实对称矩阵相似对角化定理3.2.2 实对称矩阵相似对角化过程 写在最后 引言 承接前文&#xff0c;我们来看看矩阵的对角化理论。 我们前面提到对角化是在矩阵相似那里&#xff0c;若存…...

【计算机网络】IP数据报首部格式、最大传输单元MTU、最大分段大小MSS

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 更多计算机网络知识专栏&#xff1a;计算机网络&#x1f525; 给大家跳段…...

shell脚本之文件读写

shell脚本之文件读写 1、读取文件内容并打印2、将内容写入文件3、追加内容到文件末尾4、读取文件内容到变量中5、逐行读取文件内容并处理6、逐行追加内容到文件末尾7、获取文件行数8、获取文件最后一个单词 Shell 脚本读写文件的方法有很多种&#xff0c;下面是一些常见的方法&…...

SAP 刷新Fiori Apps缓存的方法(解决修改CDS后Fiori无法重载新配置)

1. 问题 修改CDS Annotation后&#xff0c;基于Fiori Element发布的Fiori App无法应用新的界面 2. 解决办法 2319491 - How to clean up the cache after applying changes that affect SAP Fiori apps刷新Frontend&#xff1a; SE38&#xff1a; /UI5/APP_INDEX_CALCULATE…...

如何在 Excel 中计算日期之间的天数

计算两个日期之间的天数是 Excel中的常见操作。无论您是规划项目时间表、跟踪时间还是分析一段时间内的趋势&#xff0c;了解如何在 Excel 中查找日期之间的天数都可以提供强大的日期计算功能。 幸运的是&#xff0c;Excel 提供了多种简单的方法来获取两个日期之间的天数。继续…...

Java高级-注解

注解 1.介绍2.元注解3.注解的解析4.注解的应用场景 1.介绍 注解 Annotation 就是Java代码里的特殊标记&#xff0c;作用是让其他程序根据注解信息来决定什么是执行该程序注解&#xff1a;注解可以在类上、构造器上、方法上、成员变量上、参数上等位置 自定义注解 /*** 自定…...

wabp.m 代码注释(便于算法快速理解)

算法效果: 波峰和起点检测效果: function [r,pk] = wabp(Araw, Offset,Scale, Fs) % r = wabp(Araw,Offset,Scale, Fs); % Input: Araw (125Hz sampled) waveform in wfdb-MIT format, % Offset, Scale % Araw = 血压波形 % Offset=偏移(信号减去或者加上偏移恢复成…...

数据库数据恢复-SQL SERVER数据库文件损坏的故障表现数据恢复方案

SQL SERVER数据库故障类型&#xff1a; SQL SERVER数据库MDF&#xff08;NDF&#xff09;或LDF损坏。 SQL SERVER数据库故障原因&#xff1a; 1、数据库正在操作过程中&#xff0c;机器突然断电。 2、人为误操作。 SQL SERVER数据库MDF&#xff08;NDF&#xff09;或LDF损坏的…...

flink中cpu消耗的大户-序列化和反序列化

背景 故事的起源来源于这样一篇关于序列化/反序列化优化的文章https://www.ververica.com/blog/a-journey-to-beating-flinks-sql-performance,当把传输的对象从String变成byte[]数组后&#xff0c;QPS直接提升了50% flink的网络数据交换优化 在flink中对于每个算子之间的跨…...

使用 K 均值聚类进行颜色分割

介绍 颜色分割是计算机视觉中使用的一种技术,用于根据颜色识别和区分图像中的不同对象或区域。聚类算法可以自动将相似的颜色分组在一起,而不需要为每种颜色指定阈值。当处理具有大范围颜色的图像时,或者当事先不知道确切的阈值时,这非常有用。 在本教程中,我们将探讨如何…...

Redis 哈希表操作实战(全)

目录 HSET 添加 HSETNX 添加 HMSET 批量添加 HGET 获取元素 HGETALL 获取所有 HMGET 批量查询 HEXISTS 判断是否存在 HINCRBY 增加整数 HINCRBYFLOAT 添加浮点数 HLEN 查Field数量 HKEYS 查所有Field HVALS 查所有Field值 HSCAN 迭代 HDEL 删除Field HSET 添加 …...

element table合并行或列 span-method

首先来看下官网上如何写的 <template><div><el-table:data"tableData":span-method"objectSpanMethod"borderstyle"width: 100%; margin-top: 20px"><el-table-columnprop"id"label"ID"width"18…...

【操作系统笔记】内存分配

内存对齐 问题&#xff1a;为什么需要内存对齐呢&#xff1f; 主要原因是为了兼容&#xff0c;为了让程序可以运行在不同的处理器中&#xff0c;有很多处理器在访问内存的时候&#xff0c;只能从特定的内存地址读取数据。换个说法就是处理器每次只能从内存取出特定个数字节的数…...

Web 整合

HTML span 行内元素 p 块级元素 br/ 强制换行 i em倾斜 b strong 加粗 u 下划线 mark 高亮 超链接 a &#xff1a;a href"链接地址" target"_blank" alt"可替文本" title"文字提示" tartget&#xff1a;_self 自己界面打开 _…...

hasOwnProperty 方法解析

一、含义&#xff1a; hasOwnProperty 是 JavaScript 中的一个内置方法&#xff0c;用于检查对象是否具有指定名称的属性。 具体来说&#xff0c;hasOwnProperty 方法用于判断一个对象是否拥有某个指定的属性&#xff0c;而不是继承自原型链的属性。它是一个布尔值方法&#…...

使用 nohup 运行 Python 脚本

简介&#xff1a;在数据科学、Web 开发或者其他需要长时间运行的任务中&#xff0c;我们经常需要让 Python 脚本在后台运行。尤其是在远程服务器上&#xff0c;可能因为网络不稳定或需要执行多个任务&#xff0c;我们不希望 Python 脚本因为终端关闭而被终止。这时&#xff0c;…...

Django:五、登录界面实现动态图片验证码

一、下载包 pip install pillow 二、代码 这是一个函数&#xff0c;无输入&#xff0c;返回两个值。一个值是图片&#xff0c;一个值是图片中的数字及字母。 需要注意&#xff1a;font_fileMonaco.ttf 是一个验证码字体文件&#xff0c;如有需要&#xff0c;可三连私信。 …...

GPT,GPT-2,GPT-3,InstructGPT的进化之路

ChatGPT 火遍圈内外&#xff0c;突然之间&#xff0c;好多人开始想要了解 NLP 这个领域&#xff0c;想知道 ChatGPT 到底是个什么&#xff1f;作为在这个行业奋斗5年的从业者&#xff0c;真的很开心让人们知道有一群人在干着这么样的一件事情。这也是我结合各位大佬的文章&…...

firefox_dev_linux下载安装配置(部分系统自带包请看结尾)

download 从 Firefox 的官方网站下载 Firefox Developer Edition 的 tar 文件 firefox_dev_linux_download # 终端快速下载 wget https://download.mozilla.org/?productfirefox-devedition-latest-ssl&oslinux64&langen-US彻底删除自带原版 # apt系 sudo apt --pu…...

vim缓存-交换文件

Catf1agCTF靶场 web swp 题目链接&#xff1a;http://catf1ag.cn/ 个人博客&#xff1a;https://sword-blogs.com/ 题目考点&#xff1a; vim在编辑文档的过程中如果异常退出&#xff0c;会产生缓存文件 vim 交换文件名 参考文章&#xff1a;vim手册 https://yianwillis.…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...