当前位置: 首页 > news >正文

Opencv cuda版本在ubuntu22.04中安装办法,解决Could NOT find CUDNN的办法

文章目录

    • 概要
    • 下载cuda的runfile版本
    • 配置环境变量
    • 官网下载cudann
    • 安装Opencv依赖包
    • 下载opencv和opencv_contrib并解压
    • 准备编译
    • 安装anaconda环境
    • 执行编译命令
    • 安装OpenCV并检查是否安装成功

概要

解决以下安装问题:

-- Could NOT find CUDNN: Found unsuitable version "..", but required is at least "7.5" (found CUDA_cudnn_LIBRARY-NOTFOUND)

下载cuda的runfile版本

连接地址:
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=runfile_local
在这里插入图片描述
注意,请下载对应驱动的版本。
在这里插入图片描述
默认驱动和 cuda toolkit都会安装成功!

配置环境变量

在这里插入图片描述

官网下载cudann

官网下载cuda对应版本的cudnn:
https://developer.nvidia.com/rdp/cudnn-archive#a-collapse805-111
这里我们选择的是最新的cudnn版本v8.6.0。
在这里插入图片描述
cudnn 8的版本,将有版本号的头文件单独写了一个文件cudnn_version.h,而不再是之前的cudnn.h,所以需要执行的是以下语句(这里容易出错。8.x以后的cudnn需要执行此语句.)

sudo cp /usr/include/cudnn*.h /usr/local/cuda/include/
sudo cp /usr/lib/libcudnn* /usr/local/cuda/lib64/

安装Opencv依赖包

sudo apt-get update
sudo apt-get upgrade
sudo apt install cmake pkg-config unzip yasm git checkinstall libjpeg-dev libpng-dev libtiff-dev libavcodec-dev libavformat-dev libswscale-dev libavresample-dev libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libxvidcore-dev x264 libx264-dev libfaac-dev libmp3lame-dev libtheora-dev libfaac-dev libmp3lame-dev libvorbis-dev libopencore-amrnb-dev libopencore-amrwb-dev
sudo apt-get install libdc1394-22 libdc1394-22-dev libxine2-dev libv4l-dev v4l-utils
cd /usr/include/linux
sudo ln -s -f ../libv4l1-videodev.h videodev.h
cd ~
sudo apt-get install libgtk-3-dev libtbb-dev libatlas-base-dev gfortran

下载opencv和opencv_contrib并解压


git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git

准备编译

cd opencv-4.5.5
mkdir build
cd build

安装anaconda环境

到以下环境安装anaconda
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

执行编译命令

cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D CMAKE_C_COMPILER=/usr/bin/gcc-9 \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D INSTALL_C_EXAMPLES=ON \
-D OPENCV_ENABLE_NONFREE=ON \
-D BUILD_opencv_python3=ON \
-D WITH_CUDA=ON \
-D WITH_CUDNN=ON \
-D WITH_TBB=ON \
-D OPENCV_DNN_CUDA=ON \
-D ENABLE_FAST_MATH=1 \
-D CUDA_FAST_MATH=1 \
-D CUDA_ARCH_BIN=8.0 \
-D WITH_CUBLAS=1 \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_EXTRA_MODULES_PATH=/home/qwen/opencv_contrib/modules \
-D PYTHON3_EXECUTABLE=/home/qwen/anaconda3/bin/python3.7m \
-D PYTHON3_INCLUDE_DIR=/home/qwen/anaconda3/include/python3.7m \
-D PYTHON3_LIBRARY=/home/qwen/anaconda3/lib/libpython3.7m.so \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/home/qwen/anaconda3/lib/python3.7/site-packages/numpy/core/include \
-D PYTHON3_PACKAGES_PATH=/home/qwen/anaconda3/lib/python3.7/site-packages \
-D PYTHON_DEFAULT_EXECUTABLE=/home/qwen/anaconda3/bin/python3.7m \
-D CUDNN_LIBRARY=/usr/local/cuda/lib64/libcudnn.so.8.9.4 \
-D CUDNN_INCLUDE_DIR=/usr/local/cuda/include  \
-D CUDA_CUDA_LIBRARY=/usr/local/cuda/lib64/stubs/libcuda.so \
-D OPENCV_PYTHON3_INSTALL_PATH=/home/qwen/anaconda3/lib/python3.7/site-packages \
-D OpenCV_INCLUDE_DIRS=/usr/include/openjpeg-2.3 \
-D WITH_WEBP=OFF \
-D WITH_OPENCL=OFF \
-D ETHASHLCL=OFF \
-D ENABLE_CXX11=ON \
-D BUILD_EXAMPLES=OFF \
-D OPENCV_ENABLE_NONFREE=ON \
-D WITH_OPENGL=ON \
-D WITH_GSTREAMER=ON \
-D BUILD_OPENJPEG=ON \
-D WITH_V4L=ON \
-D WITH_QT=OFF \
-D BUILD_opencv_python3=ON \
-D BUILD_opencv_python2=OFF \
-D HAVE_opencv_python3=ON   ..

以下编译命令,需要更换为自己的地址

-D CUDA_ARCH_BIN=8.9.4 \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_EXTRA_MODULES_PATH=/home/qwen/opencv_contrib-4.5.2/modules \
-D PYTHON3_EXECUTABLE=/home/qwen/anaconda3/bin/python3.7m \
-D PYTHON3_INCLUDE_DIR=/home/qwen/anaconda3/include/python3.7m \
-D PYTHON3_LIBRARY=/home/qwen/anaconda3/lib/libpython3.7m.so \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/home/qwen/anaconda3/lib/python3.7/site-packages/numpy/core/include \
-D PYTHON3_PACKAGES_PATH=/home/qwen/anaconda3/lib/python3.7/site-packages \
-D PYTHON_DEFAULT_EXECUTABLE=/home/qwen/anaconda3/bin/python3.7m \
-D CUDNN_LIBRARY=/usr/local/cuda/lib64/libcudnn.so.8.9.4 \
-D CUDNN_INCLUDE_DIR=/usr/local/cuda/include  \
-D CUDA_CUDA_LIBRARY=/usr/local/cuda/lib64/stubs/libcuda.so \
-D OPENCV_PYTHON3_INSTALL_PATH=/home/qwen/anaconda3/lib/python3.7/site-packages \

编译成功标识:
在这里插入图片描述

安装OpenCV并检查是否安装成功

在这里插入图片描述
执行make后日志信息如下:


相关文章:

Opencv cuda版本在ubuntu22.04中安装办法,解决Could NOT find CUDNN的办法

文章目录 概要下载cuda的runfile版本配置环境变量官网下载cudann安装Opencv依赖包下载opencv和opencv_contrib并解压准备编译安装anaconda环境执行编译命令安装OpenCV并检查是否安装成功 概要 解决以下安装问题: -- Could NOT find CUDNN: Found unsuitable versi…...

全网首发YOLOv8暴力涨点:Gold-YOLO,遥遥领先,超越所有YOLO | 华为诺亚NeurIPS23

💡💡💡本文独家改进:提出了全新的信息聚集-分发(Gather-and-Distribute Mechanism)GD机制,Gold-YOLO,替换yolov8 head部分 实现暴力涨点 Gold-YOLO | 亲测在多个数据集能够实现大幅涨点 💡💡💡Yolov8魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、…...

BD就业复习第四天

1. 布隆过滤器怎么实现去重 布隆过滤器是一种用于快速检查一个元素是否可能存在于一个大集合中的数据结构,但它并不适用于精确去重。因为布隆过滤器具有一定的误判率(可能会将不存在的元素误判为存在),所以不能确保完全的去重。但…...

数据结构 | 树

树 树是n(n>0)个结点的有限集。当n 0时,称为空树。在任意一棵非空树中应满足: 有且仅有一个特定的称为根的结点。当n>1时,其余节点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm&#…...

Android11 适配

一、修改targetSdkVersion为30 将build.gradle的目标版本targetSdkVersion修改为30(Android 11) targetSdkVersion 30Android11的改变改变主要影响以Adnroid11 为目标版本的应用(targetSdkVersion>30才有影响),和所…...

UML基础与应用之对象图

什么是对象图? 对象图表示一组对象及它们之间的关系,是某一时刻系统详细信息的快照,描述系统交互的静态图形,它由协作的对象组成,但不包含在对象之间传递的任何消息。因为对象是类的实例化,所以说某一时刻…...

英码科技精彩亮相火爆的IOTE 2023,多面赋能AIoT产业发展!

9月20日至22日,在这金秋飒爽的季节,为期三天的IOTE 2023第二十届国际物联网展深圳站在深圳国际会展中心盛大举行。英码科技精彩亮相本届展会,并在同期举办的AIoT视觉物联产业生态大会发表了主题演讲,与生态伙伴们共同探讨AIoT产业…...

400G QSFP-DD FR4 与 400G QSFP-DD FR8光模块:哪个更适合您的网络需求?

QSFP-DD 光模块随着光通信市场规模的不断增长已成为400G市场中客户需求量最高的产品。其中400G QSFP-DD FR4和400G QSFP-DD FR8光模块都是针对波分中距离传输(2km)的解决方案,它们之间有什么不同?应该如何选择应用?飞速…...

【Android】Kotlin 中的 apply、let、with、also、run 到底有啥区别?

一、图示 二、apply apply 函数接收一个对象并返回该对象本身。它允许您在对象上执行一些操作&#xff0c;同时仍然返回原始对象。 这个函数的语法为&#xff1a; fun <T> T.apply(block: T.() -> Unit): T 其中&#xff0c;T 是对象的类型&#xff0c;block 是一…...

设计模式——职责链模式

职责链模式 职责链模式职责链模式解决什么问题&#xff1f;职责链模式实现 职责链模式 使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这个对象练成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;知道有一个对象处理它为止 …...

小程序自定义tabbar,中间凸起

微信小程序自带tabbar&#xff0c;但无法实现中间按钮凸起样式和功能&#xff0c;因此按照设计重新自定义一个tabbar 1、创建tabbar文件&#xff0c;与pages同级创建一个文件夹&#xff0c;custom-tab-bar,里面按照设计图将底部tabbar样式编写 <view class"tab-bar&q…...

数据结构-顺序栈C++示例

栈(stack)是限定仅在表尾进行插入或删除操作的线性表。 对栈来说&#xff0c;表尾端称为栈顶(top)&#xff0c; 表头端称为栈底(bottom)&#xff0c;不含元素的空表称为空栈。 假设栈 S ( a 1 , a 2 , a 3 , ⋯ , a n ) S(a_1,a_2,a_3,\cdots,a_n) S(a1​,a2​,a3​,⋯,an​…...

若依cloud -【 100 ~ 103 】

100 分布式日志介绍 | RuoYi 分布式日志就相当于把日志存储在不同的设备上面。比如若依项目中有ruoyi-modules-file、ruoyi-modules-gen、ruoyi-modules-job、ruoyi-modules-system四个应用&#xff0c;每个应用都部署在单独的一台机器里边&#xff0c;应用对应的日志的也单独存…...

可转债实战与案例分析——成功的和失败的可转债投资案例、教训与经验分享

实战与案例分析——投资案例研究 股票量化程序化自动交易接口 一、成功的可转债投资案例 成功的可转债投资案例提供了有价值的经验教训&#xff0c;以下是一个典型的成功案例&#xff1a; 案例&#xff1a;投资者B的成功可转债投资 投资者B是一位懂得风险管理的投资者&#…...

@NotNull注解不生效,全局异常处理

1.引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId><version>3.1.2</version> </dependency> 2&#xff1a;实体类 实体类属性加上NotNull注解…...

【办公自动化】使用Python一键往Word文档的表格中填写数据(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

OpenHarmony应用核心技术理念与需求机遇简析

一、核心技术理念 图片来源&#xff1a;OpenHarmony官方网站 二、需求机遇简析 新的万物互联智能世界代表着新规则、新赛道、新切入点、新财富机会;各WEB网站、客户端( 苹果APP、安卓APK)、微信小程序等上的组织、企业、商户等;OpenHarmony既是一次机遇、同时又是一次大的挑战&…...

让Pegasus天马座开发板实现超声波测距

在完成《让Pegasus天马座开发板用上OLED屏》后&#xff0c;我觉得可以把超声波测距功能也在Pegasus天马座开发板上实现。于是在箱子里找到了&#xff0c;Grove - Ultrasonic Ranger 这一超声波测传感器。 官方地址: https://wiki.seeedstudio.com/Grove-Ultrasonic_Ranger 超声…...

C++11 多线程学习

C11学习 一、多线程 1、模板线程是以右值传递的 template <class Fn, class... Args> explicit thread(Fn&& fn, Args&&... args)则需要使用到std::ref和std::cref很好地解决了这个问题&#xff0c;std::ref 可以包装按引用传递的值。 std::cref 可以…...

数学公式测试

MVP变换 MVP变换用来描述视图变换的任务&#xff0c;即将虚拟世界中的三维物体映射&#xff08;变换&#xff09;到二维坐标中。 MVP变换分为三步&#xff1a; 模型变换(model tranformation)&#xff1a;将模型空间转换到世界空间&#xff08;找个好的地方&#xff0c;把所…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

raid存储技术

1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划&#xff0c;涵盖存储系统的布局、数据存储策略等&#xff0c;它明确数据如何存储、管理与访问&#xff0c;为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...