当前位置: 首页 > news >正文

Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试。

1、安装opencv依赖
安装时最好更换一下源。
sudo apt-get -y update
sudo apt-get -y install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get -y install libgtk-3-dev gfortran openexr libatlas-base-dev python3-dev python3-numpy
sudo apt-get -y install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev
sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libtheora-dev libvorbis-dev libxvidcore-dev libx264-dev
sudo apt-get -y install zlib1g-dev libwebp-dev libtiff5-dev libopenexr-dev libgdal-dev libv4l-dev libxine2-dev
sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 40976EAF437D05B5
sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 3B4FE6ACC0B21F32
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt-get -y update
sudo apt-get -y install libjasper1 libjasper-dev libdc1394-dev
sudo apt-get -y install aptitude
sudo aptitude -y install libgtk-3-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev libgphoto2-dev


****切记先不要安装Anaconda,如果安装了,需要先把它的路径环境路径先注释掉!!!****

2、编译opencv库
2.1 CPU 库流程
准备opencv4.5.1代码
cd opencv4.5.1
mkdir build
cd build

//CPU 库编译
cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_GENERATE_PKGCONFIG=ON -DWITH_FFMPEG=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/soft/opencv451_cpu -DBUILD_opencv_world=ON -DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_GSTREAMER=ON -DBUILD_TIFF=ON -DBUILD_TBB=ON -DWITH_EIGEN=ON -DWITH_OPENGL=ON -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_python_bindings_generator=OFF ..


2.2 //GPU 库流程

2.2.1、下载cuda版本:cuda_11.8.0_520.61.05_linux.run
2.2.2、下载cudnn版本:cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz
**安装cuda和cudnn,参考:https://blog.csdn.net/weixin_49777848/article/details/131684172**

2.2.3、添加Cuda路径
gedit ~/.bashrc
export PATH=/usr/local/cuda-11.8/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc

2.2.4、添加cudnn路径
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

2.2.5//GPU库编译
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_GENERATE_PKGCONFIG=ON -DWITH_FFMPEG=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/soft/opencv451_cuda -DBUILD_opencv_world=ON -DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_GSTREAMER=ON -DBUILD_TIFF=ON  -DWITH_EIGEN=ON -DWITH_OPENGL=ON -DENABLE_FAST_MATH=ON -DWITH_CUDA=ON -DCUDA_FAST_MATH=ON -DCUDA_ARCH_BIN=7.5 -DWITH_CUBLAS=ON -DWITH_CUDNN=ON -DWITH_V4L=ON -DOPENCV_DNN_CUDA=ON -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib4.5.1/modules -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_python_bindings_generator=OFF ..

make -j24
make install

2.3 可能错误:
错误一:
/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link
解决:
cd /usr/local/cuda-11.8/targets/x86_64-linux/lib/
sudo ln -sf libcudnn_ops_infer.so.8.6.0 libcudnn_ops_infer.so.8.6
sudo ln -sf libcudnn_ops_infer.so.8.6 libcudnn_ops_infer.so.8
其他的一样的操作

3、例子调用(自己测试用,不方便公开)
3.1 把编译好的opencv lib和include库,在/soft/opencv451_cpu/ 和 /soft/opencv451_cuda/目录下,需要拷贝到测试用例对应的lib和include
如果用例在/home/VideoDiagnose下:
sudo cp -r /soft/opencv451_cpu/include/opencv4/opencv2 /home/VideoDiagnose/include
sudo cp /soft/opencv451_cpu/lib/libopencv_world* /home/VideoDiagnose/lib
cd /home/VideoDiagnose
sudo chmod -R 777 *

3.2 添加lib运行环境
sudo  -i 先进入root模式
gedit /etc/ld.so.conf.d/VDXN.conf
添加,需要根据自己的实际路径添加:
/home/VideoDiagnose/lib  
使其生效:
ldconfig

3.3 进入AlgTest目录下:
make
把生成的algTest拷贝到lib下,进入lib测试目录下,执行:
./algTest  ./testData/9_对比度异常/

3.4 缺失的库在export_lib下

4. opencv4.5.1代码下载地址:

链接: https://pan.baidu.com/s/1jZ-e3r__eZMXShy2XdLucA 提取码: 5zin

相关文章:

Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试。

1、安装opencv依赖 安装时最好更换一下源。 sudo apt-get -y update sudo apt-get -y install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev sudo apt-get -y install libgtk-3-dev gfortran openexr libatlas-base-dev python3-dev pyt…...

常识判断 --- 党史

目录 中共1~3大 例题 国民党 例题 中共4~5大 例题 中共起义~会议 例题 中共六届六中全会(1938年9月) 中共七大(1945年4月) 例题 中共七届二中全会 例题 中共8~10大 中共11~12届全会 例题 中共13~14大 …...

Rust 基础再理解

Rust堆栈 Rust中各种类型的值默认都存储在栈中,除非显式地使用Box::new()将它们存放在堆上,但数据要存放在栈中,要求其数据类型的大小已知。对于静态大小的类型,可直接存储在栈上,如裸指针、布尔、字符、整数浮点数&a…...

Opencv cuda版本在ubuntu22.04中安装办法,解决Could NOT find CUDNN的办法

文章目录 概要下载cuda的runfile版本配置环境变量官网下载cudann安装Opencv依赖包下载opencv和opencv_contrib并解压准备编译安装anaconda环境执行编译命令安装OpenCV并检查是否安装成功 概要 解决以下安装问题: -- Could NOT find CUDNN: Found unsuitable versi…...

全网首发YOLOv8暴力涨点:Gold-YOLO,遥遥领先,超越所有YOLO | 华为诺亚NeurIPS23

💡💡💡本文独家改进:提出了全新的信息聚集-分发(Gather-and-Distribute Mechanism)GD机制,Gold-YOLO,替换yolov8 head部分 实现暴力涨点 Gold-YOLO | 亲测在多个数据集能够实现大幅涨点 💡💡💡Yolov8魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、…...

BD就业复习第四天

1. 布隆过滤器怎么实现去重 布隆过滤器是一种用于快速检查一个元素是否可能存在于一个大集合中的数据结构,但它并不适用于精确去重。因为布隆过滤器具有一定的误判率(可能会将不存在的元素误判为存在),所以不能确保完全的去重。但…...

数据结构 | 树

树 树是n(n>0)个结点的有限集。当n 0时,称为空树。在任意一棵非空树中应满足: 有且仅有一个特定的称为根的结点。当n>1时,其余节点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm&#…...

Android11 适配

一、修改targetSdkVersion为30 将build.gradle的目标版本targetSdkVersion修改为30(Android 11) targetSdkVersion 30Android11的改变改变主要影响以Adnroid11 为目标版本的应用(targetSdkVersion>30才有影响),和所…...

UML基础与应用之对象图

什么是对象图? 对象图表示一组对象及它们之间的关系,是某一时刻系统详细信息的快照,描述系统交互的静态图形,它由协作的对象组成,但不包含在对象之间传递的任何消息。因为对象是类的实例化,所以说某一时刻…...

英码科技精彩亮相火爆的IOTE 2023,多面赋能AIoT产业发展!

9月20日至22日,在这金秋飒爽的季节,为期三天的IOTE 2023第二十届国际物联网展深圳站在深圳国际会展中心盛大举行。英码科技精彩亮相本届展会,并在同期举办的AIoT视觉物联产业生态大会发表了主题演讲,与生态伙伴们共同探讨AIoT产业…...

400G QSFP-DD FR4 与 400G QSFP-DD FR8光模块:哪个更适合您的网络需求?

QSFP-DD 光模块随着光通信市场规模的不断增长已成为400G市场中客户需求量最高的产品。其中400G QSFP-DD FR4和400G QSFP-DD FR8光模块都是针对波分中距离传输(2km)的解决方案,它们之间有什么不同?应该如何选择应用?飞速…...

【Android】Kotlin 中的 apply、let、with、also、run 到底有啥区别?

一、图示 二、apply apply 函数接收一个对象并返回该对象本身。它允许您在对象上执行一些操作&#xff0c;同时仍然返回原始对象。 这个函数的语法为&#xff1a; fun <T> T.apply(block: T.() -> Unit): T 其中&#xff0c;T 是对象的类型&#xff0c;block 是一…...

设计模式——职责链模式

职责链模式 职责链模式职责链模式解决什么问题&#xff1f;职责链模式实现 职责链模式 使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这个对象练成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;知道有一个对象处理它为止 …...

小程序自定义tabbar,中间凸起

微信小程序自带tabbar&#xff0c;但无法实现中间按钮凸起样式和功能&#xff0c;因此按照设计重新自定义一个tabbar 1、创建tabbar文件&#xff0c;与pages同级创建一个文件夹&#xff0c;custom-tab-bar,里面按照设计图将底部tabbar样式编写 <view class"tab-bar&q…...

数据结构-顺序栈C++示例

栈(stack)是限定仅在表尾进行插入或删除操作的线性表。 对栈来说&#xff0c;表尾端称为栈顶(top)&#xff0c; 表头端称为栈底(bottom)&#xff0c;不含元素的空表称为空栈。 假设栈 S ( a 1 , a 2 , a 3 , ⋯ , a n ) S(a_1,a_2,a_3,\cdots,a_n) S(a1​,a2​,a3​,⋯,an​…...

若依cloud -【 100 ~ 103 】

100 分布式日志介绍 | RuoYi 分布式日志就相当于把日志存储在不同的设备上面。比如若依项目中有ruoyi-modules-file、ruoyi-modules-gen、ruoyi-modules-job、ruoyi-modules-system四个应用&#xff0c;每个应用都部署在单独的一台机器里边&#xff0c;应用对应的日志的也单独存…...

可转债实战与案例分析——成功的和失败的可转债投资案例、教训与经验分享

实战与案例分析——投资案例研究 股票量化程序化自动交易接口 一、成功的可转债投资案例 成功的可转债投资案例提供了有价值的经验教训&#xff0c;以下是一个典型的成功案例&#xff1a; 案例&#xff1a;投资者B的成功可转债投资 投资者B是一位懂得风险管理的投资者&#…...

@NotNull注解不生效,全局异常处理

1.引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId><version>3.1.2</version> </dependency> 2&#xff1a;实体类 实体类属性加上NotNull注解…...

【办公自动化】使用Python一键往Word文档的表格中填写数据(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

OpenHarmony应用核心技术理念与需求机遇简析

一、核心技术理念 图片来源&#xff1a;OpenHarmony官方网站 二、需求机遇简析 新的万物互联智能世界代表着新规则、新赛道、新切入点、新财富机会;各WEB网站、客户端( 苹果APP、安卓APK)、微信小程序等上的组织、企业、商户等;OpenHarmony既是一次机遇、同时又是一次大的挑战&…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...