当前位置: 首页 > news >正文

Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试。

1、安装opencv依赖
安装时最好更换一下源。
sudo apt-get -y update
sudo apt-get -y install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get -y install libgtk-3-dev gfortran openexr libatlas-base-dev python3-dev python3-numpy
sudo apt-get -y install libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev
sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libtheora-dev libvorbis-dev libxvidcore-dev libx264-dev
sudo apt-get -y install zlib1g-dev libwebp-dev libtiff5-dev libopenexr-dev libgdal-dev libv4l-dev libxine2-dev
sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 40976EAF437D05B5
sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 3B4FE6ACC0B21F32
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt-get -y update
sudo apt-get -y install libjasper1 libjasper-dev libdc1394-dev
sudo apt-get -y install aptitude
sudo aptitude -y install libgtk-3-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev libgphoto2-dev


****切记先不要安装Anaconda,如果安装了,需要先把它的路径环境路径先注释掉!!!****

2、编译opencv库
2.1 CPU 库流程
准备opencv4.5.1代码
cd opencv4.5.1
mkdir build
cd build

//CPU 库编译
cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_GENERATE_PKGCONFIG=ON -DWITH_FFMPEG=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/soft/opencv451_cpu -DBUILD_opencv_world=ON -DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_GSTREAMER=ON -DBUILD_TIFF=ON -DBUILD_TBB=ON -DWITH_EIGEN=ON -DWITH_OPENGL=ON -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_python_bindings_generator=OFF ..


2.2 //GPU 库流程

2.2.1、下载cuda版本:cuda_11.8.0_520.61.05_linux.run
2.2.2、下载cudnn版本:cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz
**安装cuda和cudnn,参考:https://blog.csdn.net/weixin_49777848/article/details/131684172**

2.2.3、添加Cuda路径
gedit ~/.bashrc
export PATH=/usr/local/cuda-11.8/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc

2.2.4、添加cudnn路径
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

2.2.5//GPU库编译
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_GENERATE_PKGCONFIG=ON -DWITH_FFMPEG=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_INSTALL_PREFIX=/soft/opencv451_cuda -DBUILD_opencv_world=ON -DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_GSTREAMER=ON -DBUILD_TIFF=ON  -DWITH_EIGEN=ON -DWITH_OPENGL=ON -DENABLE_FAST_MATH=ON -DWITH_CUDA=ON -DCUDA_FAST_MATH=ON -DCUDA_ARCH_BIN=7.5 -DWITH_CUBLAS=ON -DWITH_CUDNN=ON -DWITH_V4L=ON -DOPENCV_DNN_CUDA=ON -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib4.5.1/modules -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_python_bindings_generator=OFF ..

make -j24
make install

2.3 可能错误:
错误一:
/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link
解决:
cd /usr/local/cuda-11.8/targets/x86_64-linux/lib/
sudo ln -sf libcudnn_ops_infer.so.8.6.0 libcudnn_ops_infer.so.8.6
sudo ln -sf libcudnn_ops_infer.so.8.6 libcudnn_ops_infer.so.8
其他的一样的操作

3、例子调用(自己测试用,不方便公开)
3.1 把编译好的opencv lib和include库,在/soft/opencv451_cpu/ 和 /soft/opencv451_cuda/目录下,需要拷贝到测试用例对应的lib和include
如果用例在/home/VideoDiagnose下:
sudo cp -r /soft/opencv451_cpu/include/opencv4/opencv2 /home/VideoDiagnose/include
sudo cp /soft/opencv451_cpu/lib/libopencv_world* /home/VideoDiagnose/lib
cd /home/VideoDiagnose
sudo chmod -R 777 *

3.2 添加lib运行环境
sudo  -i 先进入root模式
gedit /etc/ld.so.conf.d/VDXN.conf
添加,需要根据自己的实际路径添加:
/home/VideoDiagnose/lib  
使其生效:
ldconfig

3.3 进入AlgTest目录下:
make
把生成的algTest拷贝到lib下,进入lib测试目录下,执行:
./algTest  ./testData/9_对比度异常/

3.4 缺失的库在export_lib下

4. opencv4.5.1代码下载地址:

链接: https://pan.baidu.com/s/1jZ-e3r__eZMXShy2XdLucA 提取码: 5zin

相关文章:

Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试。

1、安装opencv依赖 安装时最好更换一下源。 sudo apt-get -y update sudo apt-get -y install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev sudo apt-get -y install libgtk-3-dev gfortran openexr libatlas-base-dev python3-dev pyt…...

常识判断 --- 党史

目录 中共1~3大 例题 国民党 例题 中共4~5大 例题 中共起义~会议 例题 中共六届六中全会(1938年9月) 中共七大(1945年4月) 例题 中共七届二中全会 例题 中共8~10大 中共11~12届全会 例题 中共13~14大 …...

Rust 基础再理解

Rust堆栈 Rust中各种类型的值默认都存储在栈中,除非显式地使用Box::new()将它们存放在堆上,但数据要存放在栈中,要求其数据类型的大小已知。对于静态大小的类型,可直接存储在栈上,如裸指针、布尔、字符、整数浮点数&a…...

Opencv cuda版本在ubuntu22.04中安装办法,解决Could NOT find CUDNN的办法

文章目录 概要下载cuda的runfile版本配置环境变量官网下载cudann安装Opencv依赖包下载opencv和opencv_contrib并解压准备编译安装anaconda环境执行编译命令安装OpenCV并检查是否安装成功 概要 解决以下安装问题: -- Could NOT find CUDNN: Found unsuitable versi…...

全网首发YOLOv8暴力涨点:Gold-YOLO,遥遥领先,超越所有YOLO | 华为诺亚NeurIPS23

💡💡💡本文独家改进:提出了全新的信息聚集-分发(Gather-and-Distribute Mechanism)GD机制,Gold-YOLO,替换yolov8 head部分 实现暴力涨点 Gold-YOLO | 亲测在多个数据集能够实现大幅涨点 💡💡💡Yolov8魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、…...

BD就业复习第四天

1. 布隆过滤器怎么实现去重 布隆过滤器是一种用于快速检查一个元素是否可能存在于一个大集合中的数据结构,但它并不适用于精确去重。因为布隆过滤器具有一定的误判率(可能会将不存在的元素误判为存在),所以不能确保完全的去重。但…...

数据结构 | 树

树 树是n(n>0)个结点的有限集。当n 0时,称为空树。在任意一棵非空树中应满足: 有且仅有一个特定的称为根的结点。当n>1时,其余节点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm&#…...

Android11 适配

一、修改targetSdkVersion为30 将build.gradle的目标版本targetSdkVersion修改为30(Android 11) targetSdkVersion 30Android11的改变改变主要影响以Adnroid11 为目标版本的应用(targetSdkVersion>30才有影响),和所…...

UML基础与应用之对象图

什么是对象图? 对象图表示一组对象及它们之间的关系,是某一时刻系统详细信息的快照,描述系统交互的静态图形,它由协作的对象组成,但不包含在对象之间传递的任何消息。因为对象是类的实例化,所以说某一时刻…...

英码科技精彩亮相火爆的IOTE 2023,多面赋能AIoT产业发展!

9月20日至22日,在这金秋飒爽的季节,为期三天的IOTE 2023第二十届国际物联网展深圳站在深圳国际会展中心盛大举行。英码科技精彩亮相本届展会,并在同期举办的AIoT视觉物联产业生态大会发表了主题演讲,与生态伙伴们共同探讨AIoT产业…...

400G QSFP-DD FR4 与 400G QSFP-DD FR8光模块:哪个更适合您的网络需求?

QSFP-DD 光模块随着光通信市场规模的不断增长已成为400G市场中客户需求量最高的产品。其中400G QSFP-DD FR4和400G QSFP-DD FR8光模块都是针对波分中距离传输(2km)的解决方案,它们之间有什么不同?应该如何选择应用?飞速…...

【Android】Kotlin 中的 apply、let、with、also、run 到底有啥区别?

一、图示 二、apply apply 函数接收一个对象并返回该对象本身。它允许您在对象上执行一些操作&#xff0c;同时仍然返回原始对象。 这个函数的语法为&#xff1a; fun <T> T.apply(block: T.() -> Unit): T 其中&#xff0c;T 是对象的类型&#xff0c;block 是一…...

设计模式——职责链模式

职责链模式 职责链模式职责链模式解决什么问题&#xff1f;职责链模式实现 职责链模式 使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这个对象练成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;知道有一个对象处理它为止 …...

小程序自定义tabbar,中间凸起

微信小程序自带tabbar&#xff0c;但无法实现中间按钮凸起样式和功能&#xff0c;因此按照设计重新自定义一个tabbar 1、创建tabbar文件&#xff0c;与pages同级创建一个文件夹&#xff0c;custom-tab-bar,里面按照设计图将底部tabbar样式编写 <view class"tab-bar&q…...

数据结构-顺序栈C++示例

栈(stack)是限定仅在表尾进行插入或删除操作的线性表。 对栈来说&#xff0c;表尾端称为栈顶(top)&#xff0c; 表头端称为栈底(bottom)&#xff0c;不含元素的空表称为空栈。 假设栈 S ( a 1 , a 2 , a 3 , ⋯ , a n ) S(a_1,a_2,a_3,\cdots,a_n) S(a1​,a2​,a3​,⋯,an​…...

若依cloud -【 100 ~ 103 】

100 分布式日志介绍 | RuoYi 分布式日志就相当于把日志存储在不同的设备上面。比如若依项目中有ruoyi-modules-file、ruoyi-modules-gen、ruoyi-modules-job、ruoyi-modules-system四个应用&#xff0c;每个应用都部署在单独的一台机器里边&#xff0c;应用对应的日志的也单独存…...

可转债实战与案例分析——成功的和失败的可转债投资案例、教训与经验分享

实战与案例分析——投资案例研究 股票量化程序化自动交易接口 一、成功的可转债投资案例 成功的可转债投资案例提供了有价值的经验教训&#xff0c;以下是一个典型的成功案例&#xff1a; 案例&#xff1a;投资者B的成功可转债投资 投资者B是一位懂得风险管理的投资者&#…...

@NotNull注解不生效,全局异常处理

1.引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId><version>3.1.2</version> </dependency> 2&#xff1a;实体类 实体类属性加上NotNull注解…...

【办公自动化】使用Python一键往Word文档的表格中填写数据(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

OpenHarmony应用核心技术理念与需求机遇简析

一、核心技术理念 图片来源&#xff1a;OpenHarmony官方网站 二、需求机遇简析 新的万物互联智能世界代表着新规则、新赛道、新切入点、新财富机会;各WEB网站、客户端( 苹果APP、安卓APK)、微信小程序等上的组织、企业、商户等;OpenHarmony既是一次机遇、同时又是一次大的挑战&…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...