《算法通关之路》chapter17一些通用解题模板
《算法通关之路》学习笔记,记录一下自己的刷题过程,详细的内容请大家购买作者的书籍查阅。
1 二分法
1.1 普通二分法
# 查找nums数组中元素值为target的下标。如果不存在,则返回-1def bs(nums: list[int], target: int) -> int :l, h = 0, len(nums) - 1while l <= h:mid = l + (h - l) // 2if nums[mid] == target:return midelif nums[mid] < target:l = mid + 1else:h = mid - 1return -1nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
nums[bs(nums, 8)]
8
1.2 二分法变种
有些二分法类型的题目,在二分时无法直接判断中间元素是否为目标元素,这类问题被称作二分法变种问题。
例如:在有序数组里面查找第1个大于或等于5的元素,每次判断中间元素时,无法直接断定这个元素是否是第1个大于或等于5的元素,它可能是第2个或第3个大于或等于5的元素。
二分法变种问题大致分为两种情况:
- 查找第一个满足条件的元素
- 查找最后一个满足条件的元素
此外需要注意边界问题,这是二分法变种问题最容易出错的地方
# 查找第1个大于等于x的元素
# 左边界更新为l = mid + 1,不会产生死循环,当剩下1个元素时跳出即可def bs(nums: list[int], target: int) -> int :l, h = 0, len(nums) - 1while l <= h:mid = l + (h - l) // 2if l == h: # 边界条件breakelif nums[mid] < target:l = mid + 1else:h = midreturn lnums = [1, 2, 3, 4, 5, 6, 7, 9, 10]
nums[bs(nums, 8)]
9
# 查找最后1个小于等于x的元素
# 左边界更新为l = mid,会产生死循环,当剩下2个元素时跳出即可def bs(nums: list[int], target: int) -> int :l, h = 0, len(nums) - 1while l <= h:mid = l + (h - l) // 2if l == h or l + 1 == h: # 边界条件breakelif nums[mid] <= target:l = midelse:h = mid - 1return nums[h] if nums[h] <= target else nums[l]nums = [1, 2, 3, 4, 5, 6, 7, 8, 10, 11]
nums[bs(nums, 8)]
10
2 回溯法
回溯法的本质是回溯思想,通常使用递归实现。
递归的实现需要考虑3个方面:搜索的设计、递归的状态及递归的结束条件。
搜索的设计
对求解空间进行划分,让每一层递归都去尝试搜索一部分解空间,直至搜索完所有可能的解空间。
递归的状态
状态是用来区分不同递归的,一般来说,我们至少携带一种状态-当前位置idx,它用于找到当前可以继续前进的搜索空间,以此进入下一层递归。
递归的结束状态
通常包括两个方面:找到可行解,提前结束搜索;搜索完毕,已经没有搜索的解空间。
# ------
ans = []
target = 0
n = 0
nums = []
error = 0
visited = set()
# ------# idx表示当前位置,cur表示当前路径的某个信息,path表示路径
def dfs(idx, cur, path):# -------------结束条件# 1 找到解if cur == target:ans.append(path.copy())return# 2 搜索完毕if idx == n:return# --------------------# 考虑可能的解,进入下一层递归for num in nums:if num == error or num in visited:continue# 更新状态visited.add(num)dfs(idx + 1, cur + num, path + [num])# 恢复状态visited.remove(num)
3 并查集
使用parent数组记录每个节点的父节点,在初始情况下每个节点的父结点为本身,并使用rank记录每个节点为根的树的权值(树的节点数)。
- find§:当parent[p]不为p时,表示存在非本身的父节点,此时让p等于parent[p],即向上寻找祖先节点,不断寻找祖先节点,不断重复这个过程直到parnet[p]等于p。
- union(p, q):通过find(p,q)找到p和q的共同祖先节点,然后将权值小的祖先节点树合并到较高的树中。理论证明,这种算法能够保证合并后的树高度为O(logn)。
可以使用find§ == find(q)来判断两个节点是否属于同一个祖先。
class UnionFind:'''加权快速合并'''def __init__(self, n: int) -> None:self.parent = [i for i in range(n)] # 每个节点的父节点self.rank = [0 for _ in range(n)] # 以该节点为根的树权值(树的节点数)self.cnt = n # 连通区域数量def find(self, p: int) -> int: while p != self.parent[p]:p = self.parent[p]return pdef union(self, p: int, q: int) -> None: # 按秩合并root_p, root_q = self.find(p), self.find(q)if root_p == root_q:returnif self.rank[root_p] > self.rank[root_q]:self.parent[root_q] = root_pelif self.rank[root_p] < self.rank[root_q]:self.parent[root_p] = root_qelse:self.parent[root_q] = root_pself.rank[root_p] += 1self.cnt -= 1
class UnionFind:'''路径压缩加权快速合并'''def __init__(self, n: int) -> None:self.parent = [i for i in range(n)] # 每个节点的父节点self.rank = [0 for _ in range(n)] # 以该节点为根的树权值(树的节点数)self.cnt = n # 连通区域数量def find(self, p: int) -> int: # 路径压缩if p != self.parent[p]:self.parent[p] = self.find(self.parent[p])return self.parent[p]def union(self, p: int, q: int) -> None: # # 按秩合并root_p, root_q = self.find(p), self.find(q)if root_p == root_q:returnif self.rank[root_p] > self.rank[root_q]:self.parent[root_q] = root_pelif self.rank[root_p] < self.rank[root_q]:self.parent[root_p] = root_qelse:self.parent[root_q] = root_pself.rank[root_p] += 1self.cnt -= 1
4 BFS
基于队列的广度优先遍历,将起始节点放入队列中,循环遍历队列中的节点。扩展节点相邻的有效节点,并将其放入队列中。
from collections import dequegrid = [0 * 5 for _ in range(5)] # n * m的矩阵def bfs(grid):m, n = len(grid), len(grid[0])directions = [(0, 1), (0, -1), (-1, 0), (1, 0)] # 扩展方向visited = [[False] * n for _ in range(m)] # 记录节点是否被访问queue = deque()level = 0 # 深度queue.append((0, 0))visited[0][0] = Truewhile len(queue) > 0:sz = len(queue)for _ in range(sz):top = queue.popleft()x, y = top# 扩展节点for d in directions:next_x, next_y = x + d[0], y + d[1]# 判断相邻节点是否有效if next_x < 0 or next_x >= m or next_y < 0 or next_y >= n:continuequeue.append((next_x, next_y))visited[next_x][next_y] = Truelevel += 1return level
5 滑动窗口
借助双指针表示窗口的左边界和右边界,并非根据题目要求不断移动指针。
根据窗口大小是否固定,以及最优解为最大或最小窗口,可以将滑动窗口分为3种类型。
5.1 窗口大小固定,最优解与窗口大小无关
nums = [] # 题目给定数组
cnt = {x : 0 for x in nums} #字典记录出现次数
ans = 0 # 答案
init_len = 0 # 窗口大小def check(cnt): # 题目所述条件passdef get(left, right): # 题目要求的答案pass# 初始化大小为init_len的窗口
for i in range(init_len):num = nums[i]cnt[num] += 1left, right = 0, init_len# 检查是否满足题目要求
if check(cnt):ans = get(left, right)while right < len(nums):num, num2 = nums[left], nums[right]cnt[num] -= 1cnt[num2] += 1# 检查是否满足题目要求if check(cnt):# 优化答案ans = max(ans, get(left, right))left += 1right += 1
5.2 窗口大小不固定,最优解为最小窗口
初始化大小为0的滑动窗口;然后循环移动窗口直到抵达边界,每次右指针right向右移动一步,并检查窗口是否满足条件,如果是,则循环向右移动左指针left,每移动一步,不断尝试缩小窗口直到窗口不满足条件,更新最优解。
left, right = 0, 0
nums = [] # 题目给定数组
cnt = {x : 0 for x in nums} #字典记录出现次数
ans = len(nums) # 初始值while right < len(nums):cnt[nums[right]] += 1# 满足题目要求,尽可能缩小窗口while left <= right and check(cnt):# 优化答案ans = min(ans, right - left + 1)# 尝试缩小窗口cnt[nums[left]] -= 1left += 1right += 1
5.3 窗口大小不固定,最优解为最大窗口
初始化大小为0的滑动窗口;然后循环移动窗口直到抵达边界,每次右指针right向右移动一步,并检查窗口是否不满足条件,如果是,则循环向右移动左指针left,每移动一步直到满足条件,更新最优解。
left, right = 0, 0
nums = [] # 题目给定数组
cnt = {x : 0 for x in nums} #字典记录出现次数
ans = 0 # 初始值while right < len(nums):cnt[nums[right]] += 1# 不满足题目要求,需要缩小窗口while not check(cnt):cnt[nums[left]] -= 1left += 1ans = max(ans, right - left + 1)right += 1
6 数学
6.1 判断素数
def isPrime(n: int) -> bool:if n <= 1:return Falsei = 2while i * i <= n:if n % i == 0:return Falsei += 1return TrueisPrime(121)
False
6.2 最大公约数
欧几里得算法: 两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。
def gcd(a: int, b: int) -> int:return a if b == 0 else gcd(b, a % b)
6.3 最小公倍数
两个数的乘积等于这两个数最大公约数和最小公倍数的乘积,最小公倍数 = 两数乘积 / 两数最大公约数
def lcm(a, int, b: int) -> int:return a * b // gcd(a, b)
相关文章:
《算法通关之路》chapter17一些通用解题模板
《算法通关之路》学习笔记,记录一下自己的刷题过程,详细的内容请大家购买作者的书籍查阅。 1 二分法 1.1 普通二分法 # 查找nums数组中元素值为target的下标。如果不存在,则返回-1def bs(nums: list[int], target: int) -> int :l, h …...

常用求解器安装
1 建模语言pyomo Pyomo是一个Python建模语言,用于数学优化建模。它可以与不同的求解器(如Gurobi,CPLEX,GLPK,SCIP等)集成使用,以求解各种数学优化问题。可以使用Pyomo建立数学优化模型…...
第三章:最新版零基础学习 PYTHON 教程(第一节 - Python 运算符)
在Python编程中,运算符一般用于对值和变量进行操作。这些是用于逻辑和算术运算的标准符号。在本文中,我们将研究不同类型的Python 运算符。 运算符:这些是特殊符号。例如- + 、 * 、 / 等。操作数:它是应用运算符的值。目录 Python 中的运算符类型 Python 中的算术运算符…...

细粒度特征提取和定位用于目标检测:PPCNN
1、简介 近年来,深度卷积神经网络在计算机视觉上取得了优异的性能。深度卷积神经网络以精确地分类目标信息而闻名,并采用了简单的卷积体系结构来降低图层的复杂性。基于深度卷积神经网络概念设计的VGG网络。VGGNet在对大规模图像进行分类方面取得了巨大…...

【STM32单片机】数学自动出题器设计
文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用STM32F103C8T6单片机控制器,使用按键、IIC OLED模块等。 主要功能: 系统运行后,OLED液晶显示出题器开机界面,默认结果范围为100,可按…...

C语言之动态内存管理篇(1)
目录 为什么存在动态内存分配 动态内存函数的介绍 malloc free calloc realloc 常见的动态内存错误 今天收假了,抓紧时间写几篇博客。我又来赶进度了。今天我们来讲解动态内存管理。🆗🆗 为什么存在动态内存分配 假设我们去实现一个…...

React18入门(第二篇)——React18+Ts项目配置husky、eslint、pretttier、commitLint
前言 我的项目版本如下: React: V18.2.0Node.js: V16.14.0TypeScript:最新版工具: VsCode 本文将采用图文详解的方式,手把手带你快速完成在React项目中配置husky、prettier、commitLint,实现编码规范的统…...

【VINS】苹果手机采集单目相机+IMU数据离线运行VINS-Mono
0.准备工作 开个新坑,之前用Android手机做过离线采集数据的实验,这次用IPhone来测试! 1.虚拟机配置Mac OS 下载一个Mac OS 的ios镜像,打开虚拟机按照跟Ubuntu差不多的方式安装,但是发现没有Mac OS的入口。 因为VMwa…...

数据结构 2.1 单链表
1.单链表 线性表:1.有限的序列 2.序列中的每一个元素都有唯一的前驱和后继,除了开头和结尾的两个节点。 顺序表:分配一块连续的内存去存放这些元素,eg、数组 链表:内存是不连续的,元素会各自被分配一块内…...

[Machine Learning]pytorch手搓一个神经网络模型
因为之前虽然写过一点点关于pytorch的东西,但是用的还是他太少了。 这次从头开始,尝试着搓出一个神经网络模型 (因为没有什么训练数据,所以最后的训练部分使用可能不太好跑起来的代码作为演示,如果有需要自己连上数据…...

KdMapper扩展实现之Dell(pcdsrvc_x64.pkms)
1.背景 KdMapper是一个利用intel的驱动漏洞可以无痕的加载未经签名的驱动,本文是利用其它漏洞(参考《【转载】利用签名驱动漏洞加载未签名驱动》)做相应的修改以实现类似功能。需要大家对KdMapper的代码有一定了解。 2.驱动信息 驱动名称pcds…...

python和go相互调用的两种方法
前言 Python 和 Go 语言是两种不同的编程语言,它们分别有自己的优势和适用场景。在一些项目中,由于团队内已有的技术栈或者某一部分业务的需求,可能需要 Python 和 Go 相互调用,以此来提升效率和性能。 性能优势 Go 通常比 Python 更高效&…...
c# 分部视图笔记
Html.Partial("**", 1) public ActionResult **(int page) { ViewBag.page page; return PartialView("**"); }...

Vue3最佳实践 第七章 TypeScript 中
Vue组件中TypeScript 在Vue组件中,我们可以使用TypeScript进行各种类型的设置,包括props、Reactive和ref等。下面,让我们详细地探讨一下这些设置。 设置描述设置props在Vue中,props本身就具有类型设定的功能。但如果你希望使用Ty…...

(三)行为模式:8、状态模式(State Pattern)(C++示例)
目录 1、状态模式(State Pattern)含义 2、状态模式的UML图学习 3、状态模式的应用场景 4、状态模式的优缺点 (1)优点 (2)缺点 5、C实现状态模式的实例 1、状态模式(State Pattern&#x…...
nginx的配置文件概述及简单demo(二)
默认配置文件 当安装完nginx后,它的目录下通常有默认的配置文件 #user nobody; worker_processes 1;#error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info;#pid logs/nginx.pid;events {worker_connection…...

Apollo Planning2.0决策规划算法代码详细解析 (2): vscode gdb单步调试环境搭建
前言: apollo planning2.0 在新版本中在降低学习和二次开发成本上进行了一些重要的优化,重要的优化有接口优化、task插件化、配置参数改造等。 GNU symbolic debugger,简称「GDB 调试器」,是 Linux 平台下最常用的一款程序调试器。GDB 编译器通常以 gdb 命令的形式在终端…...

flex 布局:元素/文字靠右
前言 略 使用flex的justify-content属性控制元素的摆放位置 靠右 <view class"more">展开更多<text class"iconfont20231007 icon-zhankai"></text></view>.more {display: flex;flex-direction: row;color: #636363;justify-co…...

java基础-第1章-走进java世界
一、计算机基础知识 常用的DOS命令 二、计算机语言介绍 三、Java语言概述 四、Java环境的搭建 JDK安装图解 环境变量的配置 配置环境变量意义 配置环境变量步骤 五、第一个Java程序 编写Java源程序 编译Java源文件 运行Java程序 六、Java语言运行机制 核心机制—Java虚拟机 核…...
jvm 堆内存 栈内存 大小设置
4种方式配置不同作用域的jvm的堆栈内存。 1、Eclise 中设置jvm内存: 改动eclipse的配置文件,对全部project都起作用 改动eclipse根文件夹下的eclipse.ini文件 -vmargs //虚拟机设置 -Xms40m //初始内存 -Xmx256m //最大内存 -Xmn16m //最小内存 -XX:PermSize=128M //非堆内…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...