机器学习之ROC与AUC
文章目录
- 定义
- ROC曲线:
- AUC(Area Under the ROC Curve):
定义
ROC(Receiver Operating Characteristic)曲线和AUC(Area Under the ROC Curve)是用于评估二分类模型性能的重要工具。
ROC曲线:
-
定义: ROC曲线是一个描述分类模型在不同阈值下真正类率(True Positive Rate,即查全率)与假正类率(False Positive Rate,即1 - 查准率)之间关系的图形。在ROC曲线上,横轴表示假正类率(FPR),纵轴表示真正类率(TPR)。
-

-
作用: ROC曲线能够帮助我们可视化模型在不同阈值下的性能,尤其在类别不平衡的情况下更为有用。通过观察ROC曲线,我们可以判断模型是否能在不同阈值下保持较好的性能。
简单来说比如 通过 分类阈值[0.5 , 0.6 , 0.7 , 0.75, 0.8 , 0.9 ],如果预测的值高于分类阈值就是1 不是就0 ,来通过调节分类阈值来调节模型的好坏。来看这个模型的泛华能力如何?
ROC曲线则是从这个角度出发来研究学习器泛华性能的有力工具
绘制ROC曲线的实现步骤如下:
-
计算真正类率(True Positive Rate,TPR)和假正类率(False Positive Rate,FPR): 使用不同的阈值将模型的预测概率转换为类别标签,然后计算每个阈值下的TPR和FPR。
- True Positive Rate(TPR): 也称为查全率(Recall),表示实际为正类别的样本中,被模型正确预测为正类别的比例。

- False Positive Rate(FPR): 表示实际为负类别的样本中,被模型错误预测为正类别的比例。

- 绘制ROC曲线: 将计算得到的TPR和FPR组成的点按照阈值的顺序绘制在二维坐标系上,横轴为FPR,纵轴为TPR。
以下是一个Python示例代码,演示如何绘制ROC曲线,其中假设y_true为真实标签,y_scores为模型的预测概率。
注意:代码里的阈值是自己给的
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt# 示例的真实标签和模型预测概率
y_true = [1, 1, 0, 1, 0, 1, 1, 0, 0, 1]
y_scores = [0.8, 0.7, 0.4, 0.6, 0.3, 0.9, 0.5, 0.2, 0.1, 0.75]# 计算ROC曲线的TPR、FPR和阈值
fpr, tpr, thresholds = roc_curve(y_true, y_scores)# 计算曲线下面积(AUC)
roc_auc = auc(fpr, tpr)# 绘制ROC曲线
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
在这个例子中,roc_curve函数会返回在所有可能阈值下的TPR、FPR和相应的阈值。然后,通过plt.plot()函数绘制这些点,得到了ROC曲线。曲线下方的面积(AUC)是ROC曲线的一个重要指标,AUC越大,表示模型在不同阈值下的性能越好。
AUC(Area Under the ROC Curve):
- 定义: AUC是ROC曲线下的面积,表示模型在所有可能阈值下的性能综合。AUC的取值范围在0.5到1之间,其中0.5表示模型性能等同于随机预测,1表示模型完美预测。
- 作用: AUC是一个单一数值,用于度量分类模型在不同阈值下的总体性能。AUC越接近1,表示模型的性能越好。它是一种常用的指标,特别在处理类别不平衡的问题时,AUC通常比准确率更能反映模型的性能。


相关文章:
机器学习之ROC与AUC
文章目录 定义ROC曲线:AUC(Area Under the ROC Curve): 定义 ROC(Receiver Operating Characteristic)曲线和AUC(Area Under the ROC Curve)是用于评估二分类模型性能的重要工具。 …...
实用篇-Eureka注册中心
一、提供者与消费者 服务提供者:一次业务中,被其他微服务调用的服务。(提供接口给其他微服务) 服务消费者:一次业务中,调用其他微服务的服务。(调用其他微服务提供的接口) 例如前面的案例中,order-service微服务是服…...
基于springboot实现篮球竞赛预约平台管理系统项目【项目源码+论文说明】
基于springboot实现篮球竞赛预约平台管理系统演示 摘要 随着信息化时代的到来,管理系统都趋向于智能化、系统化,篮球竞赛预约平台也不例外,但目前国内仍都使用人工管理,市场规模越来越大,同时信息量也越来越庞大&…...
OpenHarmony docker环境搭建所见的问题和解决
【摘要】OpenHarmony docker环境搭建需要一台安装Ubuntu的虚拟机,并且虚拟机中需要有VScode。 整个搭建流程请参考这篇博客:OpenHarmony docker环境搭建-云社区-华为云 (huaweicloud.com) 上篇博主是用Ubuntu的服务器进行环境搭建的,在使用VS…...
1817_ChibiOS的RT线程
全部学习汇总: GreyZhang/g_ChibiOS: I found a new RTOS called ChibiOS and it seems interesting! (github.com) 1. 关于线程,有几个概念需要弄清楚:声明、生命循环、延迟、线程引用、线程队列、线程时间、优先级管理、调度。 2. 两个声明…...
牛客网刷题-(7)
🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如…...
多模态领域的先进模型
多模态学习领域涌现了许多先进的模型,这些模型能够处理来自不同感官模态的信息并实现多模态任务。以下是一些先进的多模态学习模型: CLIP (Contrastive Language-Image Pretraining):由OpenAI开发的CLIP是一种多模态预训练模型,能…...
列表自动向上滚动
列表自动向上滚动 鼠标放上去 自动停止滚动 <div id"list-detail-main"><div class"my_table_thead_tr"><div v-for"(item, index) in header" :key"index" class"my_table_thead_th">{{ item }}</div…...
嘴笨的技术人员怎么发言
对于嘴笨的人来说,即兴发言简直就是灾难,想想自己窘迫的模样,自己都受不了,但职场又避免不了这种场合,所以,就要靠一些技巧让我们顺利打开思路了。 那么,今天就分享几个解救过我的不同场景即兴发…...
vue源码分析(三)——new Vue 的过程(详解data定义值后如何获取的过程)
文章目录 零、准备工作1.创建vue2项目2.修改main.js 一、import Vue from vue引入的vue是哪里来的(看导入node_modules包)1: 通过node_modules包的package.json文件2: 通过配置中的main入口文件进入开发环境的源码(1&a…...
软考系统架构师知识点集锦四:信息安全技术基础知识
一、考情分析 二、考点精讲 2.1信息加解密技术 2.1.1对称加密 概念:对称加密(又称为私人密钥加密/共享密钥加密) : 加密与解密使用同一密钥。特点:加密强度不高,但效率高;密钥分发困难。 (大量明文为了保证加密效率一般使用对称加密) 常见对称密钥加密算法:DES:…...
Vscode中不显示.ipynb文件单元格行号
找到设置,搜索line number: 看到下面那个Notebook: Line Numbers 控制单元格编辑器中行号的显示。,选择on即可;...
【Oracle】[INS-30131]执行安装程序验证所需的初始设置失败。
这里写目录标题 一、问题描述1 报错内容1.1 无法从节点“kotin”检索 exectask 的版本1.2 工作目录"xxx"无法在节点"kotin"上使用 2 相关环境2.1 安装软件2.2 安装系统 3 解决思路分析 二、解决方案1 方案一、 满足验证条件 - 不换系统1.1 第一步、检查文件…...
二进制部署kubernetes集群的推荐方式
软件版本: 软件版本containerdv1.6.5etcdv3.5.0kubernetesv1.24.0 一、系统环境 1.1 环境准备 角色IP服务k8s-master01192.168.10.10etcd、containerd、kube-apiserver、kube-scheduler、kube-controller-manager、kubele、kube-proxyk8s-node01后续etcd、conta…...
智能矩阵,引领商业新纪元!拓世方案:打破线上线下界限,开启无限营销可能!
在科技赋能商业大潮中,一切行业都在经历巨大变革,传统的营销策略被彻底改变,催生着无数企业去打造横跨线上线下、多维度、全方位的矩阵营销帝国。无数的成功案例已经告诉我们,营销不再只是宣传,而是建立品牌与消费者之…...
ADB原理(第四篇:聊聊adb shell ps与adb shell ps有无双引号的区别)
前言 对于经常使用adb的同学,不可避免的一定会这样用adb,比如我们想在手机里执行ps命令,于是在命令行中写下如下代码: adb shell ps -ef 或者 adb shell "ps -ef" 两种方式都可以使用,你喜欢用哪个呢&#…...
「网络编程」数据链路层协议_ 以太网协议学习
「前言」文章内容是数据链路层以太网协议的讲解。 「归属专栏」网络编程 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 一、以太网协议简介二、以太网帧格式(报头)三、MTU对上层协议的影响四、ARP协议4.1 ARP协议的作用4.2 ARP协议报头 一、以太网协…...
通过python操作neo4j
在neo4j中创建结点和关系 创建结点 创建电影结点 例如:创建一个Movie结点,这个结点上带有三个属性{title:‘The Matrix’, released:1999, tagline:‘Welcome to the Real World’} CREATE (TheMatrix:Movie {title:The Matrix, released:1999, tagl…...
Ubuntu中查看电脑有多少个核——lscpu
1. 使用lscpu命令: 打开终端并输入以下命令: lscpu你会看到与CPU相关的详细信息。查找"CPU(s)"这一行来看总的核心数。另外,“Core(s) per socket”表示每个插槽或每个物理CPU的核数,“Socket(s)”表示物理CPU的数量。将这两个值相乘即得到总…...
Python学习笔记第七十二天(Matplotlib imread)
Python学习笔记第七十二天 Matplotlib imread读取图像数据修改图像裁剪图像图像颜色 后记 Matplotlib imread imread() 方法是 Matplotlib 库中的一个函数,用于从图像文件中读取图像数据。 imread() 方法返回一个 numpy.ndarray 对象,其形状是 (nrows,…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
Java中HashMap底层原理深度解析:从数据结构到红黑树优化
一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一,是基于哈希表的Map接口非同步实现。它允许使用null键和null值(但只能有一个null键),并且不保证映射顺序的恒久不变。与Hashtable相比,Hash…...
