当前位置: 首页 > news >正文

⌈C++11⌋实现一个简易计算器

 原理:

数据栈:有数据就直接入栈

运算符栈:设遍历到当前的运算符位e,如果栈不为空,比较栈顶与当前运算符优先级e,当栈顶运算符优先级大于或者等于e的优先级,则出栈,并将两个数据栈的数据出栈,计算出对应的数据,加入到数据栈中,否则将运算符入栈

#include <iostream>
#include <unordered_map>
#include <stack>
#include <functional>
#include <string>#define MAX_PRI INT_MAXusing namespace std;
int main() {//数据栈stack<double> _data;   //运算符栈stack<char> _operator;   //运算符优先级unordered_map<char, int> pri{ {'+', 0}, {'-', 0}, {'*', 1}, {'/', 1}, {'^', 2}, {'(', MAX_PRI }, {')', MAX_PRI}};unordered_map<char, function<double(double, double)>> func{{'+', [](double x, double y) -> double { return x + y; }},{'-', [](double x, double y) -> double { return x - y; }},  {'*', [](double x, double y) -> double { return x * y; }},{'/', [](double x, double y) -> double { return x / y; }},{'^', [](double x, double y) -> double { return pow(x, y); }}};string exp;cin >> exp;auto calculate = [&_data, &_operator, &func]() {char op = _operator.top();_operator.pop();double x = _data.top();_data.pop();double y = _data.top();_data.pop();_data.push(func[op](y, x));   //运算顺序与出栈顺序相反};auto stringtonum = [&exp, &pri](int& i) -> double {int j = i + 1;while (j < exp.length() && pri.find(exp[j]) == pri.end()) j++;double num = stod(exp.substr(i, j - i));i = j - 1;   return num;};for (int i = 0; i < exp.length(); ++i) {char e = exp[i];if (pri.find(e) == pri.end()) {   //当前字符不是运算符,则切割数字_data.push(stringtonum(i));} else if (e == '(') {_operator.push('(');} else if (e == ')') {while (_operator.top() != '(') {calculate();}_operator.pop();} else {//当前运算符优先级<=栈顶运算符优先级,则出栈计算while (!_operator.empty() && pri[_operator.top()] >= pri[e] && _operator.top() != '(') {calculate();}_operator.push(e);}}while (!_operator.empty()) {calculate();}cout << _data.top() << endl;
}

相关文章:

⌈C++11⌋实现一个简易计算器

原理&#xff1a; 数据栈&#xff1a;有数据就直接入栈 运算符栈&#xff1a;设遍历到当前的运算符位e&#xff0c;如果栈不为空&#xff0c;比较栈顶与当前运算符优先级e&#xff0c;当栈顶运算符优先级大于或者等于e的优先级&#xff0c;则出栈&#xff0c;并将两个数据栈的…...

面试算法45:二叉树最低层最左边的值

题目 如何在一棵二叉树中找出它最低层最左边节点的值&#xff1f;假设二叉树中最少有一个节点。例如&#xff0c;在如图7.5所示的二叉树中最低层最左边一个节点的值是5。 分析 可以用一个变量bottomLeft来保存每一层最左边的节点的值。在遍历二叉树时&#xff0c;每当遇到新…...

Could not find org.jetbrains.kotlin:kotlin-stdlib-jre7:1.5.21.

前两天下了一个demo&#xff0c;运行时候报了一个这样的错&#xff0c;特此记录一下。 先看下报的错。 Caused by: org.gradle.internal.resolve.ModuleVersionNotFoundException: Could not find org.jetbrains.kotlin:kotlin-stdlib-jre7:1.5.21. Searched in the following…...

LoRaWan之LoRaMAC 的快速入门指南

概述 本快速入门指南简要介绍了 LoRaMAC 层的重要操作。示例部分提供了不同设备类别的完整示例。 初始化 LoRaMAC层的初始化函数是LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks, LoRaMacRegion_t region )。该函数具有三个参数:L…...

中国教育企业出海 新兴技术助力抢占先机

继游戏、电商、短视频等领域轮番出海之后&#xff0c;国内教育企业纷纷开启了出海之路。近日发布的《2023年教育应用出海市场洞察》报告显示&#xff0c;在中国教育企业出海市场中&#xff0c;语言学习是最主要的赛道&#xff0c;但赛道竞争更为激烈。 报告指出&#xff0c;全…...

IntelliJ IDEA2023旗舰版和社区版下载安装教程(图解)

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

【RxJava】map过程中各个Observable生命周期分析

map和flatMap的区别 首先说下map和flatMap的区别&#xff0c;防止有对RxJava还不够熟悉的小伙伴 map的Function指定如何将A转为BflatMap的Function则指定如何将Observable<A>转为Observable<B>map和flatMap最终的转换结果都是Observable<B>flatMap由于可以…...

vue 获取上一周和获取下一周的日期时间

效果图&#xff1a; 代码 <template><div><div style"padding: 20px 0;"><div style"margin-left: 10px; border-left: 5px solid #0079fe; font-size: 22px; font-weight: 600; padding-left: 10px">工作计划</div><di…...

线性代数 第四章 线性方程组

一、矩阵形式 经过初等行变换化为阶梯形矩阵。当&#xff0c;有解&#xff1b;当&#xff0c;有非零解。 有解&#xff0c;等价于 可由线性表示 克拉默法则&#xff1a;非齐次线性方程组中&#xff0c;系数行列式&#xff0c;则方程组有唯一解&#xff0c;且唯一解为 其中是…...

@DateTimeFormat和@JsonFormat注解

在日常开发中&#xff0c;有用到时间类型作为查询参数或者查询结果有时间参数的一般都会见过这两个注解。 DateTimeFormat(pattern “yyyy-MM-dd HH:mm:ss”)注解用于解析请求接口入参。将入参的字符串按照pattern设置的格式来转换成日期时间对象。 JsonFormat(timezone “G…...

做抖音短视频会经历哪些阶段?

今天来聊聊那些在抖音做大的老板&#xff0c;从开始到后期经历的四个阶段&#xff0c;以及每个阶段的工作重心 1、0—1的阶段 0—1的起步阶段是整个阶段最有难度的一环&#xff0c;很多人对0到1的认知是有错误的&#xff0c;以为爆过几条视频就已经进阶了 想要实现0-1的突破…...

【Mquant】2、量化平台的选择

文章目录 一、选择因素二、常见的量化平台三、为什么选择VeighNa&#xff1f;四、参考 一、选择因素 功能和工具集&#xff1a;量化平台应该提供丰富的功能和工具集&#xff0c;包括数据分析、策略回测、实时交易等。不同的平台可能有不同的特点和优势&#xff0c;可以根据自己…...

iPhone手机如何恢复删除的视频?整理了3个好用方法!

在日常生活中&#xff0c;我们会把各种各样的视频存放在手机里。这些视频记录着我们生活中的点点滴滴&#xff0c;每一帧都承载着珍贵的记忆。但如果我们不小心将这些重要视频删除了该怎么办&#xff1f;如何恢复删除的视频&#xff1f;本文将以iPhone手机为例子&#xff0c;教…...

全网最全的RDMA拥塞控制入门基础教程

RDMA-CC&#xff08;全网最全的RDMA拥塞控制入门基础教程&#xff09; 文章目录 RDMA-CC&#xff08;全网最全的RDMA拥塞控制入门基础教程&#xff09;DMARDMARDMA举例RDMA优势RDMA的硬件实现方法RDMA基本术语FabricCA&#xff08;Channel Adapter&#xff09;Verbs 核心概念Me…...

分布式消息队列:RabbitMQ(1)

目录 一:中间件 二:分布式消息队列 2.1:是消息队列 2.1.1:消息队列的优势 2.1.1.1:异步处理化 2.1.1.2:削峰填谷 2.2:分布式消息队列 2.2.1:分布式消息队列的优势 2.2.1.1:数据的持久化 2.2.1.2:可扩展性 2.2.1.3:应用解耦 2.2.1.4:发送订阅 2.2.2:分布式消息队列…...

Redis集群脑裂

1. 概述 Redis 集群脑裂&#xff08;Cluster Split Brain&#xff09;是指在 Redis 集群中&#xff0c;由于网络分区或通信问题&#xff0c;导致集群中的节点无法相互通信&#xff0c;最终导致集群内部发生分裂&#xff0c;出现多个子集群&#xff0c;每个子集群认为自己是有效…...

GEE教程——随机样本点添加经纬度信息

简介: 有没有办法在绘制散点图后将样本的坐标信息(纬度/经度)添加到.CSV表格数据中? 这里我们很多时候我们需要加载样本点的基本信息作为属性,本教程主要的目的就是我们选取一个研究区,然后产生随机样本点,然后利用坐标函数,进行样本点的获取经纬度,然后通过循环注意…...

PyTorch入门学习(十):神经网络-非线性激活

目录 一、简介 二、常见的非线性激活函数 三、实现非线性激活函数 四、示例&#xff1a;应用非线性激活函数 一、简介 在神经网络中&#xff0c;激活函数的主要目的是引入非线性特性&#xff0c;从而使网络能够对非线性数据建模。如果只使用线性变换&#xff0c;那么整个神…...

《golang设计模式》第三部分·行为型模式-03-解释器模式(Interpreter)

文章目录 1. 概述1.1 角色1.2 类图1.3 优缺点 2. 代码示例2.1 设计2.2 代码2.3 类图 1. 概述 解释器模式&#xff08;Interpreter&#xff09;是用于表达语言语法树和封装语句解释&#xff08;或运算&#xff09;行为的对象。 1.1 角色 AbstractExpression&#xff08;抽象表…...

Windows个性化颜色睡眠后经常改变

问题再现 我把系统颜色换成了一种红色&#xff0c;结果每次再打开电脑又变回去了&#xff08;绿色&#xff09;&#xff1b; 原因是因为wallpaper engine在捣蛋 需要禁用修改windows配色这一块选项&#xff1b; 完事&#xff01;原来是wallpaper engine的问题&#xff1b;...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...