面试算法45:二叉树最低层最左边的值
题目
如何在一棵二叉树中找出它最低层最左边节点的值?假设二叉树中最少有一个节点。例如,在如图7.5所示的二叉树中最低层最左边一个节点的值是5。
分析
可以用一个变量bottomLeft来保存每一层最左边的节点的值。在遍历二叉树时,每当遇到新的一层时就将变量bottomLeft的值更新为该层第1个节点的值。当整棵二叉树都被遍历完之后,变量bottomLeft的值就是最后一次更新的值,也就是最后一层的第1个节点的值。
由于用广度优先的顺序遍历二叉树时需要区分不同的层,因此可以用两个队列分别存放不同层的节点,一个队列存放当前遍历层的节点,另一个队列存放下一层的节点。
解
public class Test {public static void main(String[] args) {TreeNode node8 = new TreeNode(8);TreeNode node6 = new TreeNode(6);TreeNode node10 = new TreeNode(10);TreeNode node5 = new TreeNode(5);TreeNode node7 = new TreeNode(7);TreeNode node9 = new TreeNode(9);TreeNode node11 = new TreeNode(11);node8.left = node6;node8.right = node10;node6.left = node5;node6.right = node7;node10.right = node9;node10.right = node11;int result = findBottomLeftValue(node8);System.out.println(result);}public static int findBottomLeftValue(TreeNode root) {Queue<TreeNode> queue1 = new LinkedList<>();Queue<TreeNode> queue2 = new LinkedList<>();queue1.offer(root);int bottomLeft = root.val;while (!queue1.isEmpty()) {TreeNode node = queue1.poll();if (node.left != null) {queue2.offer(node.left);}if (node.right != null) {queue2.offer(node.right);}if (queue1.isEmpty()) {queue1 = queue2;queue2 = new LinkedList<>();if (!queue1.isEmpty()) {bottomLeft = queue1.peek().val;}}}return bottomLeft;}
}
相关文章:

面试算法45:二叉树最低层最左边的值
题目 如何在一棵二叉树中找出它最低层最左边节点的值?假设二叉树中最少有一个节点。例如,在如图7.5所示的二叉树中最低层最左边一个节点的值是5。 分析 可以用一个变量bottomLeft来保存每一层最左边的节点的值。在遍历二叉树时,每当遇到新…...
Could not find org.jetbrains.kotlin:kotlin-stdlib-jre7:1.5.21.
前两天下了一个demo,运行时候报了一个这样的错,特此记录一下。 先看下报的错。 Caused by: org.gradle.internal.resolve.ModuleVersionNotFoundException: Could not find org.jetbrains.kotlin:kotlin-stdlib-jre7:1.5.21. Searched in the following…...
LoRaWan之LoRaMAC 的快速入门指南
概述 本快速入门指南简要介绍了 LoRaMAC 层的重要操作。示例部分提供了不同设备类别的完整示例。 初始化 LoRaMAC层的初始化函数是LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks, LoRaMacRegion_t region )。该函数具有三个参数:L…...

中国教育企业出海 新兴技术助力抢占先机
继游戏、电商、短视频等领域轮番出海之后,国内教育企业纷纷开启了出海之路。近日发布的《2023年教育应用出海市场洞察》报告显示,在中国教育企业出海市场中,语言学习是最主要的赛道,但赛道竞争更为激烈。 报告指出,全…...

IntelliJ IDEA2023旗舰版和社区版下载安装教程(图解)
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
【RxJava】map过程中各个Observable生命周期分析
map和flatMap的区别 首先说下map和flatMap的区别,防止有对RxJava还不够熟悉的小伙伴 map的Function指定如何将A转为BflatMap的Function则指定如何将Observable<A>转为Observable<B>map和flatMap最终的转换结果都是Observable<B>flatMap由于可以…...

vue 获取上一周和获取下一周的日期时间
效果图: 代码 <template><div><div style"padding: 20px 0;"><div style"margin-left: 10px; border-left: 5px solid #0079fe; font-size: 22px; font-weight: 600; padding-left: 10px">工作计划</div><di…...
线性代数 第四章 线性方程组
一、矩阵形式 经过初等行变换化为阶梯形矩阵。当,有解;当,有非零解。 有解,等价于 可由线性表示 克拉默法则:非齐次线性方程组中,系数行列式,则方程组有唯一解,且唯一解为 其中是…...
@DateTimeFormat和@JsonFormat注解
在日常开发中,有用到时间类型作为查询参数或者查询结果有时间参数的一般都会见过这两个注解。 DateTimeFormat(pattern “yyyy-MM-dd HH:mm:ss”)注解用于解析请求接口入参。将入参的字符串按照pattern设置的格式来转换成日期时间对象。 JsonFormat(timezone “G…...

做抖音短视频会经历哪些阶段?
今天来聊聊那些在抖音做大的老板,从开始到后期经历的四个阶段,以及每个阶段的工作重心 1、0—1的阶段 0—1的起步阶段是整个阶段最有难度的一环,很多人对0到1的认知是有错误的,以为爆过几条视频就已经进阶了 想要实现0-1的突破…...

【Mquant】2、量化平台的选择
文章目录 一、选择因素二、常见的量化平台三、为什么选择VeighNa?四、参考 一、选择因素 功能和工具集:量化平台应该提供丰富的功能和工具集,包括数据分析、策略回测、实时交易等。不同的平台可能有不同的特点和优势,可以根据自己…...

iPhone手机如何恢复删除的视频?整理了3个好用方法!
在日常生活中,我们会把各种各样的视频存放在手机里。这些视频记录着我们生活中的点点滴滴,每一帧都承载着珍贵的记忆。但如果我们不小心将这些重要视频删除了该怎么办?如何恢复删除的视频?本文将以iPhone手机为例子,教…...

全网最全的RDMA拥塞控制入门基础教程
RDMA-CC(全网最全的RDMA拥塞控制入门基础教程) 文章目录 RDMA-CC(全网最全的RDMA拥塞控制入门基础教程)DMARDMARDMA举例RDMA优势RDMA的硬件实现方法RDMA基本术语FabricCA(Channel Adapter)Verbs 核心概念Me…...

分布式消息队列:RabbitMQ(1)
目录 一:中间件 二:分布式消息队列 2.1:是消息队列 2.1.1:消息队列的优势 2.1.1.1:异步处理化 2.1.1.2:削峰填谷 2.2:分布式消息队列 2.2.1:分布式消息队列的优势 2.2.1.1:数据的持久化 2.2.1.2:可扩展性 2.2.1.3:应用解耦 2.2.1.4:发送订阅 2.2.2:分布式消息队列…...
Redis集群脑裂
1. 概述 Redis 集群脑裂(Cluster Split Brain)是指在 Redis 集群中,由于网络分区或通信问题,导致集群中的节点无法相互通信,最终导致集群内部发生分裂,出现多个子集群,每个子集群认为自己是有效…...
GEE教程——随机样本点添加经纬度信息
简介: 有没有办法在绘制散点图后将样本的坐标信息(纬度/经度)添加到.CSV表格数据中? 这里我们很多时候我们需要加载样本点的基本信息作为属性,本教程主要的目的就是我们选取一个研究区,然后产生随机样本点,然后利用坐标函数,进行样本点的获取经纬度,然后通过循环注意…...
PyTorch入门学习(十):神经网络-非线性激活
目录 一、简介 二、常见的非线性激活函数 三、实现非线性激活函数 四、示例:应用非线性激活函数 一、简介 在神经网络中,激活函数的主要目的是引入非线性特性,从而使网络能够对非线性数据建模。如果只使用线性变换,那么整个神…...
《golang设计模式》第三部分·行为型模式-03-解释器模式(Interpreter)
文章目录 1. 概述1.1 角色1.2 类图1.3 优缺点 2. 代码示例2.1 设计2.2 代码2.3 类图 1. 概述 解释器模式(Interpreter)是用于表达语言语法树和封装语句解释(或运算)行为的对象。 1.1 角色 AbstractExpression(抽象表…...

Windows个性化颜色睡眠后经常改变
问题再现 我把系统颜色换成了一种红色,结果每次再打开电脑又变回去了(绿色); 原因是因为wallpaper engine在捣蛋 需要禁用修改windows配色这一块选项; 完事!原来是wallpaper engine的问题;...
calico ipam使用
calico ipam使用 前面的文章pod获取ip地址的过程中提到过calico使用的IP地址的管理模块是其自己开发的模块calico-ipam,本篇文章来讲述下其具体用法。 一、环境信息 版本信息 本环境使用版本是k8s 1.25.3 [rootnode1 ~]# kubectl get node NAME STATUS ROLES …...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...