计算机视觉的监督学习与无监督学习
什么是监督学习?
监督学习是一种机器学习算法,它从一组已标记的 合成数据生成器中生成的训练数据中学习。这意味着数据科学家已经用正确的标签(例如,“猫”或“狗”)标记了训练集中的每个数据点,以便算法可以学习如何预测不可预见数据的结果并准确识别新图像数据中的对象。
监督学习算法的典型计算机视觉任务包括目标检测、视觉识别和分类。
①、在目标检测中,监督学习算法用于学习如何识别和定位图像中的对象。
②、在图像识别中,监督学习算法用于学习如何从一组图像中识别特定对象类别(例如,“人”、“汽车”等)。
③、在图像分类中,监督学习算法用于学习如何为图像分配类标签(例如,“猫”、“狗”等)。
监督学习的例子是什么?
监督学习中常见的算法和技术包括神经网络、支持向量机 (SVM)、逻辑回归、随机森林或决策树算法。
无监督机器学习的工作原理
无监督训练过程中的步骤如下:
1、收集数据: 通过合成数据生成器 收集相关数据。例如,如果要构建一个无监督机器学习模型来对动物图像进行分组,则需要一个图像数据集,该数据集已手动分类到包含狗、猫、鸟等图片的文件夹中。但是,需要注意的是,如果正确标记数据,无监督学习算法产生的结果质量可以大大提高。
2、训练模型:该模型学习将相似的项目组合在一起或在数据中查找模式。
3、评估模型: 每次训练迭代后,都必须评估模型性能,以了解它在未查看和未标记的数据上的表现。
4、部署模型: 当模型性能足够好时,可以将其部署到实际应用程序中。
智慧城市中的计算机视觉和深度学习
监督学习与无监督学习的主要区别
在下文中,我们将讨论监督学习与无监督学习之间的区别。监督式机器学习技术和无监督式学习模型之间存在根本的特征差异,这些差异决定了它们在特定用例中的有用性。
监督学习和无监督学习的区别:输入数据
这些机器学习方法之间的最大区别在于,监督学习需要预先收集训练数据,收集训练数据可以使用合成数据生成器,而无监督学习则不需要。因此,监督学习需要大量的前期人工干预才能适当地标记数据。
例如,在计算机视觉中,注释者在图像中标记数万到数百万个数据点。数据选择和标注精度对机器学习模型性能的影响很大。虽然这有助于训练高效的机器学习模型,但存在偏差风险,并且算法只有在精确定义的条件下以及与训练数据非常相似的数据才能很好地运行。
机器学习技术适用于不同的任务
监督学习用于分类和回归任务,而无监督学习用于聚类和降维任务。
监督式学习算法通过从合成数据生成器 来生成合成训练数据集进行泛化来构建模型。目标是正确标记算法以前从未见过的新数据点。例如,您可以使用监督学习进行图像分类,其中算法学习将数据分类为不同的类别(例如,狗与猫)。监督学习算法将从狗和猫的标记图像中学习,然后能够正确地标记以前从未见过的新图像。
另一方面,无监督学习算法试图在数据中寻找隐藏的模式或内在结构。它不需要标记数据;相反,它根据相似性将数据点分组在一起。例如,您可以使用无监督学习进行图像分割,其中算法尝试查找图像中不同对象之间的边界。
监督学习与无监督学习的复杂性
监督学习更容易实现,因为它有一个特定的目标——学习如何将输入数据映射到目标输出。无监督学习虽然也有明确的目标,但没有它试图实现的特定输出,而是更专注于理解数据的底层结构。
监督学习通常更昂贵
监督学习和无监督学习之间的另一个区别是,监督学习比无监督学习更昂贵。这是因为训练监督学习模型需要收集和标记数据,这些数据可以借助合成数据生成器 来生成。
一般来说,需要对大量输入数据进行数据收集和注释才能达到预期的效果,尤其是在具有高度可变对象(例如人)的现实世界环境中。另一方面,训练无监督学习模型不需要数据科学家团队手动标记原始数据。
监督学习在计算机视觉中更准确
最后,监督学习通常比无监督学习更准确。这是因为监督式机器学习算法具有可供学习的训练数据集,而无监督式学习算法则没有。
训练深度神经网络需要对模型进行多次迭代和持续优化 (MLOps),以提高模型从未探索的数据(验证数据集)预测推理结果的能力。在大多数情况下,监督方法可以获得更准确的结果。
监督学习和无监督学习的实际应用?
无监督学习算法用于各种应用,从医学诊断到股票市场预测。一般来说,监督学习比无监督学习更广泛地使用,因为它需要更少的数据,并且更容易实现,因为输出数据是预定义的。
然而,无监督学习有其自身的优势,例如更能抵抗过拟合(卷积神经网络的一大挑战),并且能够更好地从复杂的大数据中学习,例如没有固有结构的客户数据或行为数据。
监督学习应用示例
1、物体识别: 监督学习算法可用于对图像或视频中的对象进行定位和分类(视频识别)。它们还可用于识别计算机视觉系统中的人员、车辆和其他物体。
公共场所遗弃物检测
2、文本识别: 监督学习算法可用于读取图像或视频中的文本。光学字符识别 (OCR) 系统将书面文本转换为机器可读的形式,例如,使用 AI 读取车牌或扫描文档。 具有车牌识别功能的 OCR 应用程序。
3、人脸识别:人脸识别使用在数据库上训练的深度神经网络来识别图像或视频中的人脸。该技术用于安全应用,例如解锁手机或进入建筑物。有关更多示例,请查看 DeepFace,一个流行的人脸识别库。
4、目视检查: 机器学习模型用于检查生产线上的产品是否存在工业制造中的缺陷。这是通过训练监督式机器学习模型来完成的,该模型使用标记的训练数据区分有缺陷和无缺陷的项目。
视觉缺陷检测在制造业中的应用
无监督学习的实际应用
1、异常检测: 异常检测是识别数据集中异常值的过程。这可用于欺诈检测、识别数据中的错误以及发现异常模式。这种大数据分析对于保险和金融行业识别可疑交易和检测内幕交易非常重要。
2、 语音识别: 在自然语言处理(NLP)和自然语言理解(NLU)领域,无监督学习对于提高对单词和短语上下文的理解非常重要。
3、文本情感分析: 算法可用于情感分析,根据人们对文字、表情符号和表情符号的使用来了解人们对某事的感受。这些方法用于分析社交媒体数据中抑郁检测的情绪水平。
4、客户角色: 聚类分析用于将相似的数据点组合在一起。这可用于营销、客户细分以及根据客户和买家的行为识别客户和买家档案。
5、医学影像: 无监督方法允许机器自行学习,以识别监督学习可能无法发现的模式和异常。它还可用于分割图像,以便识别单个对象。这在医学图像中特别有用,因为小细节可以产生很大的不同。
6、时间序列分析: 时间序列数据是以固定间隔间隔的数据点序列。无监督学习可用于查找时间序列数据中的模式,并根据未标记的数据对未来事件进行预测。这对于天气预报、销售预测、股票市场预测和预测交通模式等非常重要。
总结
监督方法和非监督方法之间的最大区别在于,监督模型需要标记输入。通过监督学习,我们向机器提供已知信息,以便它可以学习找到这些模式并做出预测。无监督学习采用未标记的数据集,并尝试自动识别其中的结构和模式。
监督学习的好处是,您可以训练模型,使其在解决输出选项有限(分类问题)的明确指定问题时更加准确。无监督学习更具探索性,不需要预先标记的数据,使其更加灵活。它可用于细分客户、查找关系和检测异常。
监督学习和无监督学习都是机器学习工具箱中用于数据分析的重要工具。决定使用哪一个取决于您尝试解决的问题的性质以及可用的数据量和类型。
转载:计算机视觉的监督学习与无监督学习 (mvrlink.com)
相关文章:

计算机视觉的监督学习与无监督学习
什么是监督学习? 监督学习是一种机器学习算法,它从一组已标记的 合成数据生成器中生成的训练数据中学习。这意味着数据科学家已经用正确的标签(例如,“猫”或“狗”)标记了训练集中的每个数据点,以便算法可…...
Linux-lvds接口
lvds接口 单6 单8 双6 双8...
Android 自定义View一
1.继承已有VIew,改写尺寸:重写onMeasure SquareImageView 2.完全自定义重写onMeasure 3.自定义Layout 重写onMeasure onLayout 1.继承已有VIew,改写尺寸:重写onMeasure 流程: 重写onMeasure 用getmeasureedWidth …...

11、电路综合-集总参数电路结构的S参数模型计算与Matlab
11、电路综合-集总参数电路结构的S参数模型 电路综合专栏的大纲如下: 网络综合和简化实频理论学习概述 前面介绍了许多微带线电路综合的实际案例,如: 3、电路综合原理与实践—单双端口理想微带线(伪)手算S参数与时域…...
计算机网络--真题
因特网上专门用于传输文件的协议是 因特网上专门用于传输文件的协议通常是 FTP(File Transfer Protocol)。FTP 是一种标准的网络协议,用于在计算机之间传输文件。它允许用户在客户端和服务器之间传输文件,上传文件到服务器或从服务…...

java毕业设计基于ssm的招聘求职网站
项目介绍 本前途招聘求职网站是针对目前仓库的实际需求,从实际工作出发,对过去的前途招聘求职网站存在的问题进行分析,完善用户的使用体会。采用计算机系统来管理信息,取代人工管理模式,查询便利,信息准确…...

【JavaEE初阶】 初识网络原理
文章目录 🌲网络发展史🚩独立模式🚩网络互连📌局域网LAN🎈基于网线直连🎈基于集线器组建🎈基于交换机组建🎈基于交换机和路由器组建 📌广域网WAN 🍀网络通信基…...
LeetCode题解:993. 二叉树的堂兄弟节点,BFS,JavaScript,详细注释
原题链接: https://leetcode.cn/problems/cousins-in-binary-tree/ 解题思路: 使用队列进行BFS搜索,同时保存每个节点,以及其深度和父节点信息。当搜索到x和y时,对比深度和父节点,如果满足要求࿰…...

在python中加载tensorflow-probability模块和numpy模块
目录 操作步骤: 注意: 问题: 解决办法: 操作步骤: 在虚拟环境的文件夹中,找到Scripts文件夹,点击进去,找到地址栏,在地址栏中输入cmd,进入如下界面。 输…...
t2017递推2猴子摘桃
2、猴子摘桃(nhoi2005xx1) Description 果园里种了很多桃树,当桃树开始结果的时候,猴子便会成群结队地前来摘桃。 猴子们第一天会摘掉桃子的一半还多一个,第二天再摘第一天剩下的一半还多一个,以后每天均摘掉上一天剩下的一半还…...

呼吸灯【FPGA】
晶振50Mhz 1us 等于 计0~49 1ms等于 0~999us 1s等于 0~999ms //led_outalways(posedge FPGA_CLK_50M_b5 or negedge reset_e8) //【死循环】敏感【触发条件:上升沿 clk】【运行副本】if(reset_e81b0)begin //50Mhz晶振, 49_999_999 是 1秒…...
Codeforces 1855E 数学期望 + DP
题意 传送门 Codeforces 1855E Expected Destruction 题解 将 S i S_i Si 运动至 S i 1 S_{i1} Si1 的情况看作后者消失,则 S i S_i Si 在碰到 S i 1 S_{i 1} Si1 前, S i 1 S_{i 1} Si1 必然存在。 根据数学期望的线性性质&…...
5-1CComplex运算符重载为友元
以下是一个用运算符重载为友元重载的方法重做复数加减法的运算,请填空完成程序。 #include <iostream> using namespace std; class CComplex { private:double real; double imag; public:CComplex(double r0.0,double i0.0){ real(r), imag(i)}friend…...
Vue3.0 watch和watchEffect监听器:VCA
简介 在项目中,有时候检测一个变量的值是否反升了变化。通常使用的watch或者使用低效的循环判断。 在次vue中给我们设置了深度监测数据繁盛变化的方法。 1.vue中提供了在watch监听时设置deep:true 就可以实现对对象的深度监听; 2.immediate:true,代表watch里面声明了…...

1360. 日期之间隔几天
1360. 日期之间隔几天 Java代码: 【DateFormat】DateFormat用于实现日期的格式化 import java.text.DateFormat; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Date; // 好像已过时class Solution {public int daysBet…...

ubuntu配置 Conda 更改默认环境路径
我的需求是以后凡是新建一个虚拟环境都需要安装在一个挂载了大容量的分区/data里面 /home里面的是即将爆满但是还能塞点东西的硬盘. 如果您想要永久更改 Conda 的默认环境路径,可以编辑 Conda 的配置文件。首先,找到 Conda 的配置文件通常是 .condarc 文…...

华山编程培训中心——工业相机飞拍
飞拍功能是一种高速运动图像采集技术,通过降低相机的曝光时间来拍摄快速移动的对象,以提高工作效率和加快生产速度。下面视频演示工业相机飞拍: 上位机控制工业相机飞拍演示 一. 飞拍对相机硬件的要求 全局快门相机:飞拍要求相机…...
linux 释放缓存命令并做成定时任务
这个命令组合可以实现将待写入的数据同步到磁盘中,然后释放页面缓存。具体命令为: sync; echo 1 > /proc/sys/vm/drop_caches 第一个命令 sync 是将所有待写入磁盘的数据刷新到磁盘中,确保数据写入完成。第二个命令 echo 1 > /proc/…...

求解一个整数中含多少个1
1.问题描述:给定一个整数,统计其对应的二进制中含有1的个数。比如8(0000 1000),对应的二进制数中,只含有一个1. 2.设计思路:对x取余:zx%2。如果z!0,说明x的末尾不是为1.对于一个二进制x4x3x2x1…...
js编写一个函数判断所有数据类型
一、typeof 在 JavaScript 里使用 typeof 来判断数据类型,只能区分基本类型,即 “number”,”string”,”undefined”,”boolean”,”object” 五种。 对于数组、对象来说,其关系错综复杂&…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...