当前位置: 首页 > news >正文

优化大表分页查询性能:大表LIMIT 1000000, 10该怎么优化?

在处理大数据量的MySQL表时,我们经常会遇到一个问题:当我们尝试使用LIMIT语句进行分页查询时,性能会随着偏移量的增加而显著下降。例如,SELECT * FROM table LIMIT 1000000, 10 这样的查询可能会非常慢。那么,我们应该如何解决这个问题呢?

问题原因

首先,我们需要理解为什么这个问题会发生。MySQL在执行LIMIT语句时,会先跳过指定的偏移量,然后返回接下来的行。这意味着,如果你的偏移量非常大,比如1,000,000,MySQL需要先跳过1,000,000行,这是非常耗时的。

解决方案

对于这个问题,我们有几种可能的解决方案:

  1. 使用索引覆盖扫描(Covering Index Scan):如果你的查询可以被一个索引完全覆盖,那么MySQL可以只读取索引,而不需要读取实际的行。这可以大大提高查询速度。

  2. 记住上次查询的最后一个ID:如果你的表有一个递增的ID列,你可以在每次查询时记住上次查询的最后一个ID,然后在下一次查询时使用这个ID来限制结果。

  3. 使用分区表:如果你的表非常大,你可以考虑使用分区表。这样,你的查询可以只扫描一个分区,而不是整个表。

下面,我们将详细讨论这些解决方案,并提供Java示例代码。

使用索引覆盖扫描

假设我们有一个用户表,表结构如下:

CREATE TABLE `users` (`id` bigint(20) NOT NULL AUTO_INCREMENT,`username` varchar(255) DEFAULT NULL,`email` varchar(255) DEFAULT NULL,PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1000001 DEFAULT CHARSET=utf8;

我们的查询是:SELECT * FROM users ORDER BY id LIMIT 1000000, 10

为了优化这个查询,我们可以创建一个覆盖索引:

CREATE INDEX idx_users_id_username_email ON users(id, username, email);

然后,我们可以修改查询为:

SELECT id, username, email FROM users ORDER BY id LIMIT 1000000, 10;

这样,MySQL可以只读取索引,而不需要读取实际的行。

在Java中,我们可以使用JdbcTemplate来执行这个查询:

import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;import java.util.List;public class UserDao {private JdbcTemplate jdbcTemplate;public UserDao(JdbcTemplate jdbcTemplate) {this.jdbcTemplate = jdbcTemplate;}public List<User> getUsers(int offset, int limit) {String sql = "SELECT id, username, email FROM users ORDER BY id LIMIT ?, ?";return jdbcTemplate.query(sql, new Object[]{offset, limit}, (rs, rowNum) ->new User(rs.getLong("id"), rs.getString("username"), rs.getString("email")));}
}

记住上次查询的最后一个ID

另一个解决方案是在每次查询时记住上次查询的最后一个ID,然后在下一次查询时使用这个ID来限制结果。这样,我们就不需要跳过任何行,而可以直接从需要的位置开始查询。

假设我们的初始查询是:SELECT * FROM users ORDER BY id LIMIT 10。然后,我们记住最后一个用户的ID,假设是10。在下一次查询时,我们可以使用这个ID来限制结果:SELECT * FROM users WHERE id > 10 ORDER BY id LIMIT 10

在Java中,我们可以修改UserDao类来实现这个功能:

public class UserDao {private JdbcTemplate jdbcTemplate;public UserDao(JdbcTemplate jdbcTemplate) {this.jdbcTemplate = jdbcTemplate;}public List<User> getUsers(long lastId, int limit) {String sql = "SELECT * FROM users WHERE id > ? ORDER BY id LIMIT ?";return jdbcTemplate.query(sql, new Object[]{lastId, limit}, (rs, rowNum) ->new User(rs.getLong("id"), rs.getString("username"), rs.getString("email")));}
}

使用分区表

如果你的表非常大,你可以考虑使用分区表。例如,你可以按照ID的范围来分区你的表。然后,你的查询可以只扫描一个分区,而不是整个表。

在MySQL中,你可以使用PARTITION BY RANGE语句来创建分区表:

CREATE TABLE users (id INT NOT NULL,username VARCHAR(30) NOT NULL,email VARCHAR(30) NOT NULL,PRIMARY KEY(id)
)
PARTITION BY RANGE (id) (PARTITION p0 VALUES LESS THAN (1000000),PARTITION p1 VALUES LESS THAN (2000000),PARTITION p2 VALUES LESS THAN MAXVALUE
);

在Java中,我们可以按照分区来查询数据:

public class UserDao {private JdbcTemplate jdbcTemplate;public UserDao(JdbcTemplate jdbcTemplate) {this.jdbcTemplate = jdbcTemplate;}public List<User> getUsers(int partition, int limit) {String sql = "SELECT * FROM users PARTITION (p" + partition + ") ORDER BY id LIMIT ?";return jdbcTemplate.query(sql, new Object[]{limit}, (rs, rowNum) ->new User(rs.getLong("id"), rs.getString("username"), rs.getString("email")));}
}

结论

在处理大数据量的MySQL表时,我们需要考虑如何优化我们的分页查询。我们可以使用索引覆盖扫描,记住上次查询的最后一个ID,或者使用分区表。每种方法都有其优点和适用场景,我们需要根据我们的具体需求来选择最适合的方法。

👉 💐🌸 公众号请关注 "果酱桑", 一起学习,一起进步! 🌸💐

相关文章:

优化大表分页查询性能:大表LIMIT 1000000, 10该怎么优化?

在处理大数据量的MySQL表时&#xff0c;我们经常会遇到一个问题&#xff1a;当我们尝试使用LIMIT语句进行分页查询时&#xff0c;性能会随着偏移量的增加而显著下降。例如&#xff0c;SELECT * FROM table LIMIT 1000000, 10 这样的查询可能会非常慢。那么&#xff0c;我们应该…...

ubuntu PX4 vscode stlink debug设置

硬件 stlink holybro debug板 pixhawk4 安装openocd 官方文档&#xff0c;但是第一步安装建议从源码安装&#xff0c;bug少很多 github链接 编译安装&#xff0c;参考 ./bootstrap (when building from the git repository)./configure [options]makesudo make install安装后…...

Flask的一种启动方式和三种托管方式

1. 原生启动 Flask 支持使用原生的 app.run() 方法来启动应用程序。这种方法是最简单、最基本的启动方式&#xff0c;适用于开发环境和小型应用程序。 from flask import Flaskapp Flask(__name__)app.route(/) def hello_world():return Hello, World!if __name__ __main__…...

cudnn too short

原因是libcudnn.so为软链接&#xff0c;相当于快捷键&#xff0c;但是没有映射到真正的libcudnn.so.8.9.5上 cd /usr/local/cuda-11.6/lib64 ln -s libcudnn.so.8.9.5 libcudnn.so.8...

01、SpringBoot + MyBaits-Plus 集成微信支付 -->项目搭建

目录 SpringBoot MyBaits-Plus 集成微信支付 之 项目搭建1、创建boot项目2、引入Swagger作用&#xff1a;2-1、引入依赖2-2、写配置文件进行测试2-3、访问Swagger页面2-4、注解优化显示 3、定义统一结果作用&#xff1a;3-1、引入lombok依赖3-2、写个统一结果的类-->RR类的…...

Linux 性能调优之网络优化

写在前面 考试整理相关笔记分享一些 Linux 中网络内核参数调优的笔记理解不足小伙伴帮忙指正 对每个人而言&#xff0c;真正的职责只有一个&#xff1a;找到自我。然后在心中坚守其一生&#xff0c;全心全意&#xff0c;永不停息。所有其它的路都是不完整的&#xff0c;是人的逃…...

RT-Thread系统使用常见问题处理记录

1.使用telnet连接系统时发送help指令显示不全的问题。 原因&#xff1a;telnet发送缓存太小。 解决办法&#xff1a;更改agile_telnet软件包里Set agile_telnet tx buffer size的大小。 2.使用Paho MQTT软件包过一段时间报错hard fault on thread: mqtt0 解决办法&#xff1…...

优先队列----数据结构

概念 不知道你玩过英雄联盟吗&#xff1f;英雄联盟里面的防御塔会攻击离自己最近的小兵&#xff0c;但是如果有炮车兵在塔内&#xff0c;防御塔会优先攻击炮车&#xff08;因为炮车的威胁性更大&#xff09;&#xff0c;只有没有兵线在塔内时&#xff0c;防御塔才会攻击英雄。…...

nginx项目部署教程

nginx项目部署教程 1. 项目部署介绍 当我们的项目开发完毕后&#xff0c;我们需要将项目打包、部署到服务器上&#xff0c;供用户来使用。 目前&#xff0c;常见的部署方式有两种&#xff1a; 后端部署 前后端分离部署 1-1 后端部署 这是最古老的部署方式&#xff0c;也是…...

资源限流 + 本地分布式多重锁——高并发性能挡板,隔绝无效流量请求

前言 在高并发分布式下&#xff0c;我们往往采用分布式锁去维护一个同步互斥的业务需求&#xff0c;但是大家细想一下&#xff0c;在一些高TPS的业务场景下&#xff0c;让这些请求全部卡在获取分布式锁&#xff0c;这会造成什么问题&#xff1f; 瞬时高并发压垮系统 众所周知…...

day52【子序列】300.最长递归子序列 674.最长连续递增序列 718.最长重复子数组

文章目录 300.最长递增子序列674.最长连续递增序列718.最长重复子数组 300.最长递增子序列 题目链接&#xff1a;力扣链接 讲解链接&#xff1a;代码随想录链接 题意&#xff1a;给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而…...

计算机视觉 计算机视觉识别是什么?

计算机视觉识别&#xff08;Computer Vision Recognition&#xff09;是计算机科学和人工智能领域中的一个重要分支&#xff0c;它致力于使计算机系统能够模拟和理解人类视觉的过程&#xff0c;从而能够自动识别、分析和理解图像或视频中的内容。这一领域的发展旨在让计算机具备…...

Make.com实现多个APP应用的自动化的入门指南

Make.com是一款基于云的自动化平台&#xff0c;可帮助用户将多个应用程序连接在一起&#xff0c;并通过设置自动化流程来简化日常任务。Make.com提供丰富的API集成&#xff0c;支持连接各种流行的应用程序&#xff0c;包括社交媒体、电子商务、CRM等。 使用Make.com实现多个AP…...

LLMs之HFKR:HFKR(基于大语言模型实现异构知识融合的推荐算法)的简介、原理、性能、实现步骤、案例应用之详细攻略

LLMs之HFKR:HFKR(基于大语言模型实现异构知识融合的推荐算法)的简介、原理、性能、实现步骤、案例应用之详细攻略 目录 HFKR的简介 异构知识融合:一种基于LLM的个性化推荐新方法...

多模态 多引擎 超融合 新生态!2023亚信科技AntDB数据库8.0产品发布

9月20日&#xff0c;以“多模态 多引擎 超融合 新生态”为主题的亚信科技AntDB数据库8.0产品发布会成功举办&#xff0c;从技术和生态两个角度全方位展示了AntDB数据库第8次大型能力升级和生态建设成果。浙江移动、用友、麒麟软件、华录高诚、金云智联等行业伙伴及业界专家共同…...

elasticsearch无法访问9200端口

近期部署elasticsearch后&#xff0c;启动时发现一直报如下错误: curl: (7) Failed connect to localhost:9200&#xff1b; Connection refused 部署的版本为elasticsearch-7.13.2,排查原因是因为开启了ssl认证。 解决方法: 在/opt/software/elasticsearch-7.13.2/config下…...

【Linux】进程等待

文章目录 进程等待进程等待必要性实验(见见猪跑)进程等待的方法wait方法waitpid**方法**宏的使用方法获取子进程status 阻塞VS非阻塞概念对比非阻塞有什么好处 具体代码实现进程的阻塞等待方式:进程的非阻塞等待方式:让父进程做其他任务 进程等待 进程等待必要性 之前讲过&am…...

电视「沉浮录」:跌出家电“三大件”?

【潮汐商业评论/原创】 “这年头谁还看电视&#xff0c;家里电视近一年都没打开过了&#xff0c;我明天就打算把它二手卖掉。”想到已落灰许久的电视机&#xff0c;Andy打开了二手平台。 “要不是这几年孩子网课多&#xff0c;我是真没考虑换新电视&#xff0c;家里用了8年的…...

前端实现调用打印机和小票打印(TSPL )功能

Ⅰ- 壹 - 使用需求 前端 的方式 点击这个按钮&#xff0c;直接让打印机打印我想要的东西 Ⅱ - 贰 - 小票打印 目前比较好的方式就是直接用 TSPL 标签打印指令集, 基础环境就不多说了,这个功能的实现就是利用usb发送指令,现在缺少个来让我们能够和usb沟通的工具,下面这就是推…...

串口通信(6)应用定时器中断+串口中断实现接收一串数据

本文为博主 日月同辉&#xff0c;与我共生&#xff0c;csdn原创首发。希望看完后能对你有所帮助&#xff0c;不足之处请指正&#xff01;一起交流学习&#xff0c;共同进步&#xff01; > 发布人&#xff1a;日月同辉,与我共生_单片机-CSDN博客 > 欢迎你为独创博主日月同…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...

起重机起升机构的安全装置有哪些?

起重机起升机构的安全装置是保障吊装作业安全的关键部件&#xff0c;主要用于防止超载、失控、断绳等危险情况。以下是常见的安全装置及其功能和原理&#xff1a; 一、超载保护装置&#xff08;核心安全装置&#xff09; 1. 起重量限制器 功能&#xff1a;实时监测起升载荷&a…...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space

问题&#xff1a;IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案&#xff1a;将编译的堆内存增加一点 位置&#xff1a;设置setting-》构建菜单build-》编译器Complier...

手动给中文分词和 直接用神经网络RNN做有什么区别

手动分词和基于神经网络&#xff08;如 RNN&#xff09;的自动分词在原理、实现方式和效果上有显著差异&#xff0c;以下是核心对比&#xff1a; 1. 实现原理对比 对比维度手动分词&#xff08;规则 / 词典驱动&#xff09;神经网络 RNN 分词&#xff08;数据驱动&#xff09…...