优化大表分页查询性能:大表LIMIT 1000000, 10该怎么优化?
在处理大数据量的MySQL表时,我们经常会遇到一个问题:当我们尝试使用LIMIT语句进行分页查询时,性能会随着偏移量的增加而显著下降。例如,SELECT * FROM table LIMIT 1000000, 10 这样的查询可能会非常慢。那么,我们应该如何解决这个问题呢?
问题原因
首先,我们需要理解为什么这个问题会发生。MySQL在执行LIMIT语句时,会先跳过指定的偏移量,然后返回接下来的行。这意味着,如果你的偏移量非常大,比如1,000,000,MySQL需要先跳过1,000,000行,这是非常耗时的。
解决方案
对于这个问题,我们有几种可能的解决方案:
-
使用索引覆盖扫描(Covering Index Scan):如果你的查询可以被一个索引完全覆盖,那么MySQL可以只读取索引,而不需要读取实际的行。这可以大大提高查询速度。
-
记住上次查询的最后一个ID:如果你的表有一个递增的ID列,你可以在每次查询时记住上次查询的最后一个ID,然后在下一次查询时使用这个ID来限制结果。
-
使用分区表:如果你的表非常大,你可以考虑使用分区表。这样,你的查询可以只扫描一个分区,而不是整个表。
下面,我们将详细讨论这些解决方案,并提供Java示例代码。
使用索引覆盖扫描
假设我们有一个用户表,表结构如下:
CREATE TABLE `users` (`id` bigint(20) NOT NULL AUTO_INCREMENT,`username` varchar(255) DEFAULT NULL,`email` varchar(255) DEFAULT NULL,PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1000001 DEFAULT CHARSET=utf8;
我们的查询是:SELECT * FROM users ORDER BY id LIMIT 1000000, 10。
为了优化这个查询,我们可以创建一个覆盖索引:
CREATE INDEX idx_users_id_username_email ON users(id, username, email);
然后,我们可以修改查询为:
SELECT id, username, email FROM users ORDER BY id LIMIT 1000000, 10;
这样,MySQL可以只读取索引,而不需要读取实际的行。
在Java中,我们可以使用JdbcTemplate来执行这个查询:
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;import java.util.List;public class UserDao {private JdbcTemplate jdbcTemplate;public UserDao(JdbcTemplate jdbcTemplate) {this.jdbcTemplate = jdbcTemplate;}public List<User> getUsers(int offset, int limit) {String sql = "SELECT id, username, email FROM users ORDER BY id LIMIT ?, ?";return jdbcTemplate.query(sql, new Object[]{offset, limit}, (rs, rowNum) ->new User(rs.getLong("id"), rs.getString("username"), rs.getString("email")));}
}
记住上次查询的最后一个ID
另一个解决方案是在每次查询时记住上次查询的最后一个ID,然后在下一次查询时使用这个ID来限制结果。这样,我们就不需要跳过任何行,而可以直接从需要的位置开始查询。
假设我们的初始查询是:SELECT * FROM users ORDER BY id LIMIT 10。然后,我们记住最后一个用户的ID,假设是10。在下一次查询时,我们可以使用这个ID来限制结果:SELECT * FROM users WHERE id > 10 ORDER BY id LIMIT 10。
在Java中,我们可以修改UserDao类来实现这个功能:
public class UserDao {private JdbcTemplate jdbcTemplate;public UserDao(JdbcTemplate jdbcTemplate) {this.jdbcTemplate = jdbcTemplate;}public List<User> getUsers(long lastId, int limit) {String sql = "SELECT * FROM users WHERE id > ? ORDER BY id LIMIT ?";return jdbcTemplate.query(sql, new Object[]{lastId, limit}, (rs, rowNum) ->new User(rs.getLong("id"), rs.getString("username"), rs.getString("email")));}
}
使用分区表
如果你的表非常大,你可以考虑使用分区表。例如,你可以按照ID的范围来分区你的表。然后,你的查询可以只扫描一个分区,而不是整个表。
在MySQL中,你可以使用PARTITION BY RANGE语句来创建分区表:
CREATE TABLE users (id INT NOT NULL,username VARCHAR(30) NOT NULL,email VARCHAR(30) NOT NULL,PRIMARY KEY(id)
)
PARTITION BY RANGE (id) (PARTITION p0 VALUES LESS THAN (1000000),PARTITION p1 VALUES LESS THAN (2000000),PARTITION p2 VALUES LESS THAN MAXVALUE
);
在Java中,我们可以按照分区来查询数据:
public class UserDao {private JdbcTemplate jdbcTemplate;public UserDao(JdbcTemplate jdbcTemplate) {this.jdbcTemplate = jdbcTemplate;}public List<User> getUsers(int partition, int limit) {String sql = "SELECT * FROM users PARTITION (p" + partition + ") ORDER BY id LIMIT ?";return jdbcTemplate.query(sql, new Object[]{limit}, (rs, rowNum) ->new User(rs.getLong("id"), rs.getString("username"), rs.getString("email")));}
}
结论
在处理大数据量的MySQL表时,我们需要考虑如何优化我们的分页查询。我们可以使用索引覆盖扫描,记住上次查询的最后一个ID,或者使用分区表。每种方法都有其优点和适用场景,我们需要根据我们的具体需求来选择最适合的方法。
👉 💐🌸 公众号请关注 "果酱桑", 一起学习,一起进步! 🌸💐
相关文章:
优化大表分页查询性能:大表LIMIT 1000000, 10该怎么优化?
在处理大数据量的MySQL表时,我们经常会遇到一个问题:当我们尝试使用LIMIT语句进行分页查询时,性能会随着偏移量的增加而显著下降。例如,SELECT * FROM table LIMIT 1000000, 10 这样的查询可能会非常慢。那么,我们应该…...
ubuntu PX4 vscode stlink debug设置
硬件 stlink holybro debug板 pixhawk4 安装openocd 官方文档,但是第一步安装建议从源码安装,bug少很多 github链接 编译安装,参考 ./bootstrap (when building from the git repository)./configure [options]makesudo make install安装后…...
Flask的一种启动方式和三种托管方式
1. 原生启动 Flask 支持使用原生的 app.run() 方法来启动应用程序。这种方法是最简单、最基本的启动方式,适用于开发环境和小型应用程序。 from flask import Flaskapp Flask(__name__)app.route(/) def hello_world():return Hello, World!if __name__ __main__…...
cudnn too short
原因是libcudnn.so为软链接,相当于快捷键,但是没有映射到真正的libcudnn.so.8.9.5上 cd /usr/local/cuda-11.6/lib64 ln -s libcudnn.so.8.9.5 libcudnn.so.8...
01、SpringBoot + MyBaits-Plus 集成微信支付 -->项目搭建
目录 SpringBoot MyBaits-Plus 集成微信支付 之 项目搭建1、创建boot项目2、引入Swagger作用:2-1、引入依赖2-2、写配置文件进行测试2-3、访问Swagger页面2-4、注解优化显示 3、定义统一结果作用:3-1、引入lombok依赖3-2、写个统一结果的类-->RR类的…...
Linux 性能调优之网络优化
写在前面 考试整理相关笔记分享一些 Linux 中网络内核参数调优的笔记理解不足小伙伴帮忙指正 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃…...
RT-Thread系统使用常见问题处理记录
1.使用telnet连接系统时发送help指令显示不全的问题。 原因:telnet发送缓存太小。 解决办法:更改agile_telnet软件包里Set agile_telnet tx buffer size的大小。 2.使用Paho MQTT软件包过一段时间报错hard fault on thread: mqtt0 解决办法࿱…...
优先队列----数据结构
概念 不知道你玩过英雄联盟吗?英雄联盟里面的防御塔会攻击离自己最近的小兵,但是如果有炮车兵在塔内,防御塔会优先攻击炮车(因为炮车的威胁性更大),只有没有兵线在塔内时,防御塔才会攻击英雄。…...
nginx项目部署教程
nginx项目部署教程 1. 项目部署介绍 当我们的项目开发完毕后,我们需要将项目打包、部署到服务器上,供用户来使用。 目前,常见的部署方式有两种: 后端部署 前后端分离部署 1-1 后端部署 这是最古老的部署方式,也是…...
资源限流 + 本地分布式多重锁——高并发性能挡板,隔绝无效流量请求
前言 在高并发分布式下,我们往往采用分布式锁去维护一个同步互斥的业务需求,但是大家细想一下,在一些高TPS的业务场景下,让这些请求全部卡在获取分布式锁,这会造成什么问题? 瞬时高并发压垮系统 众所周知…...
day52【子序列】300.最长递归子序列 674.最长连续递增序列 718.最长重复子数组
文章目录 300.最长递增子序列674.最长连续递增序列718.最长重复子数组 300.最长递增子序列 题目链接:力扣链接 讲解链接:代码随想录链接 题意:给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而…...
计算机视觉 计算机视觉识别是什么?
计算机视觉识别(Computer Vision Recognition)是计算机科学和人工智能领域中的一个重要分支,它致力于使计算机系统能够模拟和理解人类视觉的过程,从而能够自动识别、分析和理解图像或视频中的内容。这一领域的发展旨在让计算机具备…...
Make.com实现多个APP应用的自动化的入门指南
Make.com是一款基于云的自动化平台,可帮助用户将多个应用程序连接在一起,并通过设置自动化流程来简化日常任务。Make.com提供丰富的API集成,支持连接各种流行的应用程序,包括社交媒体、电子商务、CRM等。 使用Make.com实现多个AP…...
LLMs之HFKR:HFKR(基于大语言模型实现异构知识融合的推荐算法)的简介、原理、性能、实现步骤、案例应用之详细攻略
LLMs之HFKR:HFKR(基于大语言模型实现异构知识融合的推荐算法)的简介、原理、性能、实现步骤、案例应用之详细攻略 目录 HFKR的简介 异构知识融合:一种基于LLM的个性化推荐新方法...
多模态 多引擎 超融合 新生态!2023亚信科技AntDB数据库8.0产品发布
9月20日,以“多模态 多引擎 超融合 新生态”为主题的亚信科技AntDB数据库8.0产品发布会成功举办,从技术和生态两个角度全方位展示了AntDB数据库第8次大型能力升级和生态建设成果。浙江移动、用友、麒麟软件、华录高诚、金云智联等行业伙伴及业界专家共同…...
elasticsearch无法访问9200端口
近期部署elasticsearch后,启动时发现一直报如下错误: curl: (7) Failed connect to localhost:9200; Connection refused 部署的版本为elasticsearch-7.13.2,排查原因是因为开启了ssl认证。 解决方法: 在/opt/software/elasticsearch-7.13.2/config下…...
【Linux】进程等待
文章目录 进程等待进程等待必要性实验(见见猪跑)进程等待的方法wait方法waitpid**方法**宏的使用方法获取子进程status 阻塞VS非阻塞概念对比非阻塞有什么好处 具体代码实现进程的阻塞等待方式:进程的非阻塞等待方式:让父进程做其他任务 进程等待 进程等待必要性 之前讲过&am…...
电视「沉浮录」:跌出家电“三大件”?
【潮汐商业评论/原创】 “这年头谁还看电视,家里电视近一年都没打开过了,我明天就打算把它二手卖掉。”想到已落灰许久的电视机,Andy打开了二手平台。 “要不是这几年孩子网课多,我是真没考虑换新电视,家里用了8年的…...
前端实现调用打印机和小票打印(TSPL )功能
Ⅰ- 壹 - 使用需求 前端 的方式 点击这个按钮,直接让打印机打印我想要的东西 Ⅱ - 贰 - 小票打印 目前比较好的方式就是直接用 TSPL 标签打印指令集, 基础环境就不多说了,这个功能的实现就是利用usb发送指令,现在缺少个来让我们能够和usb沟通的工具,下面这就是推…...
串口通信(6)应用定时器中断+串口中断实现接收一串数据
本文为博主 日月同辉,与我共生,csdn原创首发。希望看完后能对你有所帮助,不足之处请指正!一起交流学习,共同进步! > 发布人:日月同辉,与我共生_单片机-CSDN博客 > 欢迎你为独创博主日月同…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
数据库——redis
一、Redis 介绍 1. 概述 Redis(Remote Dictionary Server)是一个开源的、高性能的内存键值数据库系统,具有以下核心特点: 内存存储架构:数据主要存储在内存中,提供微秒级的读写响应 多数据结构支持&…...
