C# OpenCvSharp DNN HybridNets 同时处理车辆检测、可驾驶区域分割、车道线分割
效果
项目
代码
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;float confThreshold;float nmsThreshold;string modelpath;string anchorpath;int inpHeight;int inpWidth;float[] mean = { 0.485f, 0.456f, 0.406f };float[] std = { 0.229f, 0.224f, 0.225f };List<string> det_class_names = new List<string>() { "car" };List<string> seg_class_names = new List<string>() { "Background", "Lane", "Line" };List<Vec3b> class_colors = new List<Vec3b> { new Vec3b(0, 0, 0), new Vec3b(0, 255, 0), new Vec3b(255, 0, 0) };int det_num_class = 1;int seg_numclass = 3;float[] anchors;Net opencv_net;Mat BN_image;Mat image;Mat result_image;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){confThreshold = 0.3f;nmsThreshold = 0.5f;modelpath = "model/hybridnets_256x384.onnx";anchorpath = "model/anchors_73656.bin";inpHeight = 256;inpWidth = 384;opencv_net = CvDnn.ReadNetFromOnnx(modelpath);FileStream fileStream = new FileStream(anchorpath, FileMode.Open);//读二进制文件类BinaryReader br = new BinaryReader(fileStream, Encoding.UTF8);int len = 73656;anchors = new float[len];byte[] byteTemp;float fTemp;for (int i = 0; i < len; i++){byteTemp = br.ReadBytes(4);fTemp = BitConverter.ToSingle(byteTemp, 0);anchors[i] = fTemp;}br.Close();image_path = "test_img/test.jpg";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();image = new Mat(image_path);int newh = 0, neww = 0, padh = 0, padw = 0;Mat resize_img = Common.ResizeImage(image, inpHeight, inpWidth, ref newh, ref neww, ref padh, ref padw);float ratioh = (float)image.Rows / newh;float ratiow = (float)image.Cols / neww;Mat normalize = Common.Normalize(resize_img, mean, std);dt1 = DateTime.Now;BN_image = CvDnn.BlobFromImage(normalize);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();opencv_net.Forward(outs, outBlobNames);dt2 = DateTime.Now;float* classification = (float*)outs[0].Data;float* box_regression = (float*)outs[1].Data;float* seg = (float*)outs[2].Data;List<Rect> boxes = new List<Rect>();List<float> confidences = new List<float>();List<int> classIds = new List<int>();int num_proposal = outs[1].Size(1); //输入的是单张图, 第0维batchsize忽略for (int n = 0; n < num_proposal; n++){float conf = classification[n];if (conf > confThreshold){int row_ind = n * 4;float x_centers = box_regression[row_ind + 1] * anchors[row_ind + 2] + anchors[row_ind];float y_centers = box_regression[row_ind] * anchors[row_ind + 3] + anchors[row_ind + 1];float w = (float)(Math.Exp(box_regression[row_ind + 3]) * anchors[row_ind + 2]);float h = (float)(Math.Exp(box_regression[row_ind + 2]) * anchors[row_ind + 3]);float xmin = (float)((x_centers - w * 0.5 - padw) * ratiow);float ymin = (float)((y_centers - h * 0.5 - padh) * ratioh);w *= ratiow;h *= ratioh;Rect box = new Rect((int)xmin, (int)ymin, (int)w, (int)h);boxes.Add(box);confidences.Add(conf);classIds.Add(0);}}int[] indices;CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);result_image = image.Clone();for (int ii = 0; ii < indices.Length; ++ii){int idx = indices[ii];Rect box = boxes[idx];Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);string label = det_class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 0.75, new Scalar(0, 0, 255), 1);}int area = inpHeight * inpWidth;int i = 0, j = 0, c = 0;for (i = 0; i < result_image.Rows; i++){for (j = 0; j < result_image.Cols; j++){int x = (int)((j / ratiow) + padw); ///从原图映射回到输出特征图int y = (int)((i / ratioh) + padh);int max_id = -1;float max_conf = -10000;for (c = 0; c < seg_numclass; c++){float seg_conf = seg[c * area + y * inpWidth + x];if (seg_conf > max_conf){max_id = c;max_conf = seg_conf;}}if (max_id > 0){result_image.Set<Vec3b>(i, j, class_colors[max_id]);}}}pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}
下载
源码下载
相关文章:

C# OpenCvSharp DNN HybridNets 同时处理车辆检测、可驾驶区域分割、车道线分割
效果 项目 代码 using OpenCvSharp; using OpenCvSharp.Dnn; using System; using System.Collections.Generic; using System.Drawing; using System.IO; using System.Linq; using System.Numerics; using System.Text; using System.Windows.Forms;namespace OpenCvSharp_D…...

无需开发,精臣云可轻松连接用户运营、广告推广等行业应用
精臣智慧标识科技有限公司简介 武汉精臣智慧标识科技有限公司,是国内便携式标签打印机创新品牌和实物管理解决方案服务商。在物品标签还处在繁琐的PC打印时代,精臣公司便创造性地从智能便携角度出发,顺应移动互联时代趋势,推出了…...

第三阶段第一章——PySpark实战
学习了这么多python的知识,是时候来搞点真玩意儿了~~ 春风得意马蹄疾,一日看尽长安花 o(* ̄︶ ̄*)o 1.前言介绍 (1)什么是spark Apache Spark是一个开源的分布式计算框架,用于处理大规模数据集的…...

Python数据容器(字符串)
字符串 1.字符串 字符串也是数据容器的一种,字符串是字符的容器,一个字符串可以存放任意数量的字符。 2.字符串的下标索引 从前向后,下标从0开始从后向前,下标从-1开始 # 通过下标索引获取特定位置的字符 name python print(na…...

Python---练习:把8名讲师随机分配到3个教室
案例:把8名讲师随机分配到3个教室 列表嵌套:有3个教室[[],[],[]],8名讲师[A,B,C,D,E,F,G,H],将8名讲师随机分配到3个教室中。 分析: 思考1:我们第一间教室、第二间教室、第三间教室,怎么表示…...

python+requests接口自动化测试
原来的web页面功能测试转变成接口测试,之前大多都是手工进行,利用postman和jmeter进行的接口测试,后来,组内有人讲原先web自动化的测试框架移驾成接口的自动化框架,使用的是java语言,但对于一个学java&…...

【T3】畅捷通T3采购管理模块反结账,提示:本年数据已经结转,不能取消结账。
【问题描述】 使用畅捷通T3软件过程中, 针对以前年度进行反结账过程中,遇到采购管理模块取消12月份结账, 提示:本年数据已经结转,不能取消结账。 【分析需求】 按正常逻辑,需要清空新年度数据,…...

线性代数(五) | 矩阵对角化 特征值 特征向量
文章目录 1 矩阵的特征值和特征向量究竟是什么?2 求特征值和特征向量3 特征值和特征向量的应用4 矩阵的对角化 1 矩阵的特征值和特征向量究竟是什么? 矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种…...
读书笔记:彼得·德鲁克《认识管理》第12章 服务机构的绩效管理
一、章节内容概述 要提高服务机构和服务部门的绩效水平,需要的不是天才,相反,首先需要的是清晰的目标和任务,其次是把资源集中用于优先事项,再次需要明确的成果衡量标准,最后需要系统性地抛弃过时的目标和…...

基于FPGA的模板匹配红外目标跟踪算法设计
为什么要写这篇文章 我写这篇文章的原因是一天在B站看到了一个大神发的视频是关于跟踪一个无人机的,看到作者跟网友的回复说是用的图像匹配算法,我就在网上搜索相关资料,最终找到一篇文献。文献中对该算法的评价很高,满足制导系统…...

ZYNQ通过AXI DMA实现PL发送连续大量数据到PS DDR
硬件:ZYNQ7100 软件:Vivado 2017.4、Xilinx SDK 2017.4 ZYNQ PL 和 PS 的通信方式有 AXI GPIO、BRAM、DDR等。对于数据量较少、地址不连续、长度规则的情况,BROM 比较适用。而对于传输速度要求高、数据量大、地址连续的情况,比…...

用于强化学习的置换不变神经网络
一、介绍 如果强化学习代理提供的输入在训练中未明确定义,则通常表现不佳。一种新方法使 RL 代理能够正常运行,即使受到损坏、不完整或混乱的输入的影响也是如此。 “大脑能够使用来自皮肤的信息,就好像它来自眼睛一样。我们不是用眼睛看&…...
【华为OD题库-008】座位调整-Java
题目 疫情期间课堂的座位进行了特殊的调整,不能出现两个同学紧挨着,必须隔至少一个空位。给你一个整数数组desk表示当前座位的占座情况,由若干0和1组成,其中0表示没有占位,1表示占位。在不改变原有座位秩序情况下&…...

4 Paimon数据湖之Hive Catalog的使用
更多Paimon数据湖内容请关注:https://edu.51cto.com/course/35051.html Paimon提供了两种类型的Catalog:Filesystem Catalog和Hive Catalog。 Filesystem Catalog:会把元数据信息存储到文件系统里面。Hive Catalog:则会把元数据…...
Verilog刷题[hdlbits] :Bcdadd100
题目:Bcdadd100 You are provided with a BCD one-digit adder named bcd_fadd that adds two BCD digits and carry-in, and produces a sum and carry-out. 为您提供了一个名为bcd_fadd的BCD一位数加法器,它将两个BCD数字相加并带入,并生…...

Flink—— Data Source 介绍
Data Source 简介 Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集、历史的数据集;也可以用来做流处理,即实时的处理些实时数据流,实时的产生数据流结果,只要数据源源不断的过来ÿ…...

树之二叉排序树(二叉搜索树)
什么是排序树 说一下普通二叉树可不是左小右大的 插入的新节点是以叶子形式进行插入的 二叉排序树的中序遍历结果是一个升序的序列 下面是两个典型的二叉排序树 二叉排序树的操作 构造树的过程即是对无序序列进行排序的过程。 存储结构 通常采用二叉链表作为存储结构 不能 …...

管易云与电商平台的无代码集成:实现API连接与用户运营
管易云简介及其与电商平台的合作 金蝶管易云是金蝶集团旗下以电商为核心业务的子公司,是国内最早的电商ERP服务商之一,总部在上海,与淘宝、天猫、 京东、拼多多、抖音等300多家主流电商平台建立合作关系,同时管易云是互联网平台首…...
ElementUI的el-upload上传组件与表单一起提交遇到的各种问题以及解决办法(超详细,每个步骤都有详细解读)
背景: 使用ruoyi-vue进行2次开发,需要实现表单与文件上传一起提交,并且文件上传有4个,且文件校验很复杂,因此ruoyi-vue集成的上传组件FileUpload调试几天后发现真不太适用,最终选择element UI原生组件el-upload(FileUpload也是基于el-upload实现的),要实现表单与文件同…...
python flask_restful “message“: “Failed to decode JSON object: None“
1、问题表现 "message": "Failed to decode JSON object: None"2、出现的原因 Werkzeug 版本过高 3、解决方案 pip install Werkzeug2.0解决效果 可以正常显示json数据了 {"message": {"rate": "参数错误"} }...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

算术操作符与类型转换:从基础到精通
目录 前言:从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符:、-、*、/、% 赋值操作符:和复合赋值 单⽬操作符:、--、、- 前言:从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...
[USACO23FEB] Bakery S
题目描述 Bessie 开了一家面包店! 在她的面包店里,Bessie 有一个烤箱,可以在 t C t_C tC 的时间内生产一块饼干或在 t M t_M tM 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC,tM≤109)。由于空间…...
Vue 3 + WebSocket 实战:公司通知实时推送功能详解
📢 Vue 3 WebSocket 实战:公司通知实时推送功能详解 📌 收藏 点赞 关注,项目中要用到推送功能时就不怕找不到了! 实时通知是企业系统中常见的功能,比如:管理员发布通知后,所有用户…...