当前位置: 首页 > news >正文

智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蜻蜓算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蜻蜓算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蜻蜓算法

蜻蜓算法原理请参考:https://blog.csdn.net/u011835903/article/details/107783363
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

蜻蜓算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明蜻蜓算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蜻蜓算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…...

【古诗生成AI实战】之二——项目架构设计

[1] 项目架构 在我们深入古诗生成AI项目的具体实践之前,让我们首先理解整个项目的架构。本项目的代码流程主要分为三个关键阶段: 1、数据处理阶段;   2、模型训练阶段;   3、文本生成阶段。 第一步:在数据处理阶段…...

动态网页从数据库取信息,然后展示。

把数据库的驱动放在bin目录下。 通过servlet 读取数据库的内容,生成session,然后跨页面传给展示页。 package src;import java.io.IOException; import java.io.PrintWriter; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSe…...

单片机学习3——数码管

数码管,根据内部结构,可分为共阴极数码管和共阳极数码管。七段发光管加上一个小数点,共计8段。因此,我们对它编程的时候,刚好是用一个字节。 数码管的显示方式: 1)静态显示; 2&…...

数据库表结构导出成Excel或Word格式

前言 该工具主要用于导出excel、word,方便快速编写《数据库设计文档》,同时可以快速查看表的结构和相关信息。 本博客仅作记录,最新源码已经支持多种数据库多种格式导出,有兴趣的可移步源码作者地址:https://gitee.co…...

School training competition ( Second )

A. Medium Number 链接 : Problem - 1760A - Codeforces 就是求三个数的中位数 : #include<bits/stdc.h> #define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define endl \nusing namespace std; typedef long long LL; const int N 2e510;inline void …...

深度解析 Docker Registry:构建安全高效的私有镜像仓库

文章目录 什么是Docker Registry&#xff1f;Docker Hub vs. 私有RegistryDocker Hub&#xff1a;私有Registry&#xff1a; 如何构建私有Docker Registry&#xff1f;步骤一&#xff1a;安装Docker Registry步骤二&#xff1a;配置TLS&#xff08;可选&#xff09;步骤三&…...

leetcode 不同的二叉搜索树

给你一个整数 n &#xff0c;求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种&#xff1f;返回满足题意的二叉搜索树的种数。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;5 示例 2&#xff1a; 输入&#xff1a;n 1 输出&#xff1a;…...

通俗易懂的spring Cloud;业务场景介绍 二、Spring Cloud核心组件:Eureka 、Feign、Ribbon、Hystrix、zuul

文章目录 通俗易懂的spring Cloud一、业务场景介绍二、Spring Cloud核心组件&#xff1a;Eureka三、Spring Cloud核心组件&#xff1a;Feign四、Spring Cloud核心组件&#xff1a;Ribbon五、Spring Cloud核心组件&#xff1a;Hystrix六、Spring Cloud核心组件&#xff1a;Zuul七…...

大数据预处理技术

文章目录 前言 大数据技术成为前沿专业 也是现在甚至未来的朝阳产业&#xff0c;大数据有分别是 数据预处理 数据存储 大数据处理和分析 数据可视化 部分组成 &#xff0c;大数据行业有数据则称王&#xff0c;大数据的核心是数据本身 怎么获取有价值的数据呢&#xff1f;本章讲…...

跳表的学习记录

跳表&#xff08;Skip List&#xff09;是一种数据结构&#xff0c;它通过在多个层次上添加额外的前向指针来提高有序数据的搜索效率。跳表与其他常见的有序数据结构&#xff08;如二叉搜索树、平衡树如AVL树和红黑树、B树等&#xff09;相比&#xff0c;具有其独特的优缺点&am…...

电子学会C/C++编程等级考试2022年09月(二级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:统计误差范围内的数 统计一个整数序列中与指定数字m误差范围小于等于X的数的个数。 时间限制:5000 内存限制:65536输入 输入包含三行: 第一行为N,表示整数序列的长度(N <= 100); 第二行为N个整数,整数之间以一个空格分…...

如何使用nginx部署静态资源

Nginx可以作为静态web服务器来部署静态资源&#xff0c;这个静态资源是指在服务端真实存在&#xff0c;并且能够直接展示的一些文件数据&#xff0c;比如常见的静态资源有html页面、css文件、js文件、图片、视频、音频等资源相对于Tomcat服务器来说&#xff0c;Nginx处理静态资…...

lua的gc原理

lua垃圾回收(Garbage Collect)是lua中一个比较重要的部分。由于lua源码版本变迁&#xff0c;目前大多数有关这个方面的文章都还是基于lua5.1版本&#xff0c;有一定的滞后性。因此本文通过参考当前的5.3.4版本的Lua源码&#xff0c;希望对Lua的GC算法有一个较为详尽的探讨。 L…...

redis作为缓存详解

目录 前言&#xff1a; 为什么说关系型数据库性能不高 如何提高MySQL并发量 缓存更新策略 定期更新 实时更新 内存淘汰策略 Redis内置的淘汰策略 缓存常见问题 缓存预热 缓存穿透 缓存雪崩 缓存击穿 前言&#xff1a; 对于缓存的理解&#xff0c;缓存目的就是为了…...

231127 刷题日报

这周值班。。多少写道题吧&#xff0c;保持每天的手感。老婆给买了lubuladong纸质书&#xff0c;加油卷。 1. 131. 分割回文串 写个这个吧&#xff0c;钉在耻辱柱上的题。 为啥没写出来&#xff1a; 1. 递归树没画对 把树枝只看做是1个字母&#xff0c;而且不清楚树枝和节点…...

【Linux】vim-多模式的文本编辑器

本篇文章内容和干货较多&#xff0c;希望对大家有所帮助&#x1f44d; 目录 一、vim的介绍 1.1 vi 与 vim的概念1.2 Vim 和 Vi 的一些对比 二、vim 模式之间的切换 2.1 进入vim2.2 [正常模式]切换到[插入模式]2.3 [插入模式]切换至[正常模式]2.4 [正常模式]切换至[底行模式…...

Ubuntu 启用 root 用户

在启用 root 用户之前&#xff0c;我们先来了解一下&#xff0c; ubuntu 命令的组成。 打开 ubuntu 的终端&#xff0c;现在的命令行是由 topeetubuntu:~$ 这几个字母组成&#xff0c;那么这几个字母都代表 什么意思呢&#xff1f; topeet …...

手摸手Element-ui路由VueRoute

后端WebAPI准备 https://router.vuejs.org/zh/guide/ https://v3.router.vuejs.org/zh/installation.html <template><el-table:data"tableData"style"width: 100%":row-class-name"tableRowClassName"><!-- <el-table-colum…...

探究Kafka原理-5.Kafka设计原理和生产者原理解析

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

STM32标准库-ADC数模转换器

文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”&#xff1a;输入模块&#xff08;GPIO、温度、V_REFINT&#xff09;1.4.2 信号 “调度站”&#xff1a;多路开关1.4.3 信号 “加工厂”&#xff1a;ADC 转换器&#xff08;规则组 注入…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理&#xff1a;检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;RankRAG&#xff1a;Unifying Context Ranking…...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本&#xff0c;核心功能完全一致&#xff0c;主要区别在于模块化格式和优化方式&#xff0c;适合不同的开发环境。以下是详细对比&#xff1a; 1. 模块化格式 lodash 使用 CommonJS 模块格式&#xff08;require/module.exports&a…...

解密鸿蒙系统的隐私护城河:从权限动态管控到生物数据加密的全链路防护

摘要 本文以健康管理应用为例&#xff0c;展示鸿蒙系统如何通过细粒度权限控制、动态权限授予、数据隔离和加密存储四大核心机制&#xff0c;实现复杂场景下的用户隐私保护。我们将通过完整的权限请求流程和敏感数据处理代码&#xff0c;演示鸿蒙系统如何平衡功能需求与隐私安…...

npm install 相关命令

npm install 相关命令 基本安装命令 # 安装 package.json 中列出的所有依赖 npm install npm i # 简写形式# 安装特定包 npm install <package-name># 安装特定版本 npm install <package-name><version>依赖类型选项 # 安装为生产依赖&#xff08;默认&…...