当前位置: 首页 > news >正文

哈希表——闭散列表

该哈希表实现是闭散列实现法。

闭散列表:

        闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

        那如何寻找下一个空位置呢?

线性探测:

        线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

注意:除了线性探测,你还可以进行二次探测等,看个人实现策略。

如何插入
        通过哈希函数获取待插入元素在哈希表中的位置
        如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,
        使用线性探测找到下一个空位置,插入新元素

比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,
因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

如何删除
        采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。 

// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE};

线性探测实现插入:

		bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;// 负载因子0.7就扩容if (_n*10 / _tables.size() == 7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT;newHT._tables.resize(newSize);// 遍历旧表for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){newHT.Insert(_tables[i]._kv);}}_tables.swap(newHT._tables);}Hash hf;// 线性探测size_t hashi = hf(kv.first) % _tables.size();while (_tables[hashi]._s == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._s = EXIST;++_n;return true;}

什么是负载因子?

        负载因子是关键词key的存储个数与哈希表内存大小之比,一般取0.75左右,这样做是为了提高存储效率,(只有百分之75的内存可以用,剩余的百分之25,是不存储的)减少哈希冲突。

如何扩展内存?

        定义一个新的对象,开好想要的内存,将旧表的数据重新查到新的哈希表中,旧表的数据分布与新表的数据分布不一样,将旧表数据插入完之后,再将新表的哈希表数据与旧表的数据进行交换。

哈希表的查找:

		HashData<K, V>* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();while (_tables[hashi]._s != EMPTY){if (_tables[hashi]._s == EXIST&& _tables[hashi]._kv.first == key){return &_tables[hashi];}hashi++;hashi %= _tables.size();}return NULL;}

数据有三种状态:存在,删除,为空。

存在和删除的状态下如果没有找到要查找的数据就要向后继续查找,因为插入时进行的是线性插入,只有为空和删除的位置才进行插入,所以有可能想要的数据会出现在,删除状态的后面。

注意:如果是二次探测就进行二次查找

哈希表的删除:

		// 伪删除法bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_s = DELETE;--_n;return true;}else{return false;}}

将要删除的数据状态进行标记就行了,如果标记为空,就会影响查找函数的进行,就可能会出现查找错误的情况。

完整代码及其测试代码:

#include<vector>template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& key){// BKDRsize_t hash = 0;for (auto e : key){hash *= 31;hash += e;}//cout << key << ":" << hash << endl;return hash;}
};namespace open_address
{enum Status{EMPTY,EXIST,DELETE};template<class K, class V>struct HashData{pair<K, V> _kv;Status _s;          //状态};template<class K, class V, class Hash = HashFunc<K>>class HashTable{public:HashTable(){_tables.resize(10);}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;// 负载因子0.7就扩容if (_n*10 / _tables.size() == 7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT;newHT._tables.resize(newSize);// 遍历旧表for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){newHT.Insert(_tables[i]._kv);}}_tables.swap(newHT._tables);}Hash hf;// 线性探测size_t hashi = hf(kv.first) % _tables.size();while (_tables[hashi]._s == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._s = EXIST;++_n;return true;}HashData<K, V>* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();while (_tables[hashi]._s != EMPTY){if (_tables[hashi]._s == EXIST&& _tables[hashi]._kv.first == key){return &_tables[hashi];}hashi++;hashi %= _tables.size();}return NULL;}// 伪删除法bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_s = DELETE;--_n;return true;}else{return false;}}void Print(){for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){//printf("[%d]->%d\n", i, _tables[i]._kv.first);cout << "[" << i << "]->" << _tables[i]._kv.first <<":" << _tables[i]._kv.second<< endl;}else if (_tables[i]._s == EMPTY){printf("[%d]->\n", i);}else{printf("[%d]->D\n", i);}}cout << endl;}private:vector<HashData<K, V>> _tables;size_t _n = 0; // 存储的关键字的个数};void TestHT1(){HashTable<int, int> ht;int a[] = { 4,14,24,34,5,7,1 };for (auto e : a){ht.Insert(make_pair(e, e));}ht.Insert(make_pair(3, 3));ht.Insert(make_pair(3, 3));ht.Insert(make_pair(-3, -3));ht.Print();ht.Erase(3);ht.Print();if (ht.Find(3)){cout << "3存在" << endl;}else{cout << "3不存在" << endl;}ht.Insert(make_pair(3, 3));ht.Insert(make_pair(23, 3));ht.Print();}void TestHT2(){string arr[] = { "香蕉", "甜瓜","苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };//HashTable<string, int, HashFuncString> ht;HashTable<string, int> ht;for (auto& e : arr){//auto ret = ht.Find(e);HashData<string, int>* ret = ht.Find(e);if (ret){ret->_kv.second++;}else{ht.Insert(make_pair(e, 1));}}ht.Print();ht.Insert(make_pair("apple", 1));ht.Insert(make_pair("sort", 1));ht.Insert(make_pair("abc", 1));ht.Insert(make_pair("acb", 1));ht.Insert(make_pair("aad", 1));ht.Print();}
}

相关文章:

哈希表——闭散列表

该哈希表实现是闭散列实现法。 闭散列表&#xff1a; 闭散列&#xff1a;也叫开放定址法&#xff0c;当发生哈希冲突时&#xff0c;如果哈希表未被装满&#xff0c;说明在哈希表中必然还有空位置&#xff0c;那么可以把key存放到冲突位置中的“下一个” 空位置中去。 那如何寻…...

【ArcGIS Pro微课1000例】0036:栅格影像裁剪与提取(矢量范围裁剪dem高程数据)

本实验讲解在ArcGIS Pro中进行栅格影像裁剪与提取(矢量范围裁剪dem高程数据)的方法。DEM、DOM、DSM等栅格数据方法也可以实现。 文章目录 一、加载实验数据二、裁剪工具的使用1. 裁剪栅格2. 按掩膜提取一、加载实验数据 加载配套实验数据包中的0036.rar中的dem数据和矢量裁剪…...

Doris-Routine Load(二十七)

例行导入&#xff08;Routine Load&#xff09;功能为用户提供了一种自动从指定数据源进行数据导入的功能。 适用场景 当前仅支持从 Kafka 系统进行例行导入&#xff0c;使用限制&#xff1a; &#xff08;1&#xff09;支持无认证的 Kafka 访问&#xff0c;以及通过 SSL 方…...

linux驱动.之 网络udp应用层测试工具demon(一)

绑定vlan&#xff0c;网卡的demon&#xff0c;如果有多个网卡&#xff0c;多个vlan&#xff0c;网卡的ip设置成一致&#xff0c;那就不能只简单绑定ip来创建socket&#xff0c; 需要绑定网卡设备 客户端udp_client.c #include <stdio.h> #include <string.h> #inc…...

【Flutter】graphic图表的快速上手

简介 graphic是一个数据可视化语法和Flutter图表库。 官方github示例 网上可用资源很少,只有作者的几篇文章,并且没有特别详细的文档,使用的话还是需要一定的时间去调研,在此简单记录。 示例 以折线图为例(因为我只用到了折线图,但其他的图大差不差) 创建一个两个文…...

DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示

本心、输入输出、结果 文章目录 DeepMind 推出 OPRO 技术&#xff0c;可用于优化 ChatGPT 提示前言消息摘要OPRO的工作原理DeepMind的研究相关链接花有重开日&#xff0c;人无再少年实践是检验真理的唯一标准 DeepMind 推出 OPRO 技术&#xff0c;可用于优化 ChatGPT 提示 编辑…...

企业网络中的身份安全

随着近年来数字化转型的快速发展&#xff0c;企业使用的数字身份数量急剧增长。身份不再仅仅局限于用户。它们现在扩展到设备、应用程序、机器人、第三方供应商和组织中员工以外的其他实体。即使在用户之间&#xff0c;也存在不同类型的身份&#xff0c;例如属于IT管理员、远程…...

智能优化算法应用:基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.正余弦算法4.实验参数设定5.算法结果6.参考文献7.…...

创建一个带有背景图层和前景图层的渲染窗口

开发环境&#xff1a; Windows 11 家庭中文版Microsoft Visual Studio Community 2019VTK-9.3.0.rc0vtk-example demo解决问题&#xff1a; 创建一个带有背景图层和前景图层的渲染窗口&#xff0c;知识点&#xff1a;1. 画布转image&#xff1b;2. 渲染图层设置&#xff1b;3.…...

Docker 运行 Oracle Autonomous Database Free Container

​ Docker 运行 Oracle Autonomous Database Free Container Oracle Autonomous Database Free Container Image 介绍通过 Docker 运行 Oracle Autonomous Database Free ContainerWallet 配置可用的 TNS 别名MY_ATP TNS 别名MY_ADW TNS 别名连接到 Oracle Autonomous Databas…...

《2023全球隐私计算报告》正式发布!

2023全球隐私计算报告 1、2023全球隐私计算图谱2、国内外隐私计算相关政策3、隐私计算技术的最新发展4、隐私计算技术的合规挑战5、隐私计算的应用市场动态6、隐私计算开源整体趋势7、隐私计算的未来趋势 11月23日&#xff0c;由浙江省人民政府、商务部共同主办&#xff0c;杭州…...

JAVA sql 查询2

SELECT * FROM employees order by salayr DESC SELECT employee_id,first_name,salary from employees ORDER BY salary,employee_id desc -- 最大值 最小值 总和 平均值 SELECT max(salary),MIN(salary),sum(salary),AVG(salary) FROM employees -- 总共有多少员工 select…...

为第一个原生Spring5应用程序添加上Log4J日志框架!

&#x1f609;&#x1f609; 学习交流群&#xff1a; ✅✅1&#xff1a;这是孙哥suns给大家的福利&#xff01; ✨✨2&#xff1a;我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 &#x1f96d;&#x1f96d;3&#xff1a;QQ群&#xff1a;583783…...

单片机复位电路

有时候我们的代码会跑飞,这个时候基本上是一切推到重来.”推倒重来”在计算机术语上称为复位.复位需要硬件的支持,复位电路就是在单片机的复位管脚上产生一个信号&#xff0c;俗称复位信号.这个信号需要持续一定的时间,单片机收到该信号之后就会复位,从头执行。 复位原理: 那么…...

11.28 知识回顾(Web框架、路由控制、视图层)

一、 web 框架 1.1 web框架是什么&#xff1f; 别人帮咱们写了一些基础代码------》我们只需要在固定的位置写固定的代码--》就能实现一个web应用 Web框架&#xff08;Web framework&#xff09;是一种开发框架&#xff0c;用来支持动态网站、网络应用和网络服务的开发。这大多…...

osgFX扩展库-异性光照、贴图、卡通特效(1)

本章将简单介绍 osgFX扩展库及osgSim 扩展库。osgFX库用得比较多,osgSim库不常用&#xff0c;因此&#xff0c;这里只对这个库作简单的说明。 osgFX扩展库 osgFX是一个OpenSceneGraph 的附加库&#xff0c;是一个用于实现一致、完备、可重用的特殊效果的构架工具&#xff0c;其…...

SELinux零知识学习三十一、SELinux策略语言之角色和用户(2)

接前一篇文章:SELinux零知识学习三十、SELinux策略语言之角色和用户(1) 三、SELinux策略语言之角色和用户 SELinux提供了一种依赖于类型强制(类型增强,TE)的基于角色的访问控制(Role-Based Access Control),角色用于组域类型和限制域类型与用户之间的关系,SELinux中…...

Unity UGUI的自动布局-LayoutGroup(水平布局)组件

Horizontal Layout Group | Unity UI | 1.0.0 1. 什么是HorizontalLayoutGroup组件&#xff1f; HorizontalLayoutGroup是Unity UGUI中的一种布局组件&#xff0c;用于在水平方向上对子物体进行排列和布局。它可以根据一定的规则自动调整子物体的位置和大小&#xff0c;使它们…...

【SpringCloud】设计原则之分层架构与统一通信协议

一、设计原则之分层架构 应用分层看起来很简单&#xff0c;但每个程序员都有自己的一套方法&#xff0c;哪怕是初学者&#xff0c;所以实施起来并非易事 最早接触的分层架构应该是最熟悉的 MVC&#xff08;Model - View - Controller&#xff09;架构&#xff0c;其将应用分成…...

在Linux环境如何启动和redis数据库?

Linux中连接redis数据库&#xff1a; 前台启动&#xff1a; 第一步&#xff1a;redis-server:服务器启动命令 当我们启动改窗口后&#xff0c;出现如下所示&#xff1a; 该窗口就不能关闭&#xff0c;否则会出现redis无法使用的情况&#xff0c;重新打开一个窗口&#xff0c…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

32单片机——基本定时器

STM32F103有众多的定时器&#xff0c;其中包括2个基本定时器&#xff08;TIM6和TIM7&#xff09;、4个通用定时器&#xff08;TIM2~TIM5&#xff09;、2个高级控制定时器&#xff08;TIM1和TIM8&#xff09;&#xff0c;这些定时器彼此完全独立&#xff0c;不共享任何资源 1、定…...

STM32 低功耗设计全攻略:PWR 模块原理 + 睡眠 / 停止 / 待机模式实战(串口 + 红外 + RTC 应用全解析)

文章目录 PWRPWR&#xff08;电源控制模块&#xff09;核心功能 电源框图上电复位和掉电复位可编程电压监测器低功耗模式模式选择睡眠模式停止模式待机模式 修改主频一、准备工作二、修改主频的核心步骤&#xff1a;宏定义配置三、程序流程&#xff1a;时钟配置函数解析四、注意…...

qt 双缓冲案例对比

双缓冲 1.双缓冲原理 单缓冲&#xff1a;在paintEvent中直接绘制到屏幕&#xff0c;绘制过程被用户看到 双缓冲&#xff1a;先在redrawBuffer绘制到缓冲区&#xff0c;然后一次性显示完整结果 代码结构 单缓冲&#xff1a;所有绘制逻辑在paintEvent中 双缓冲&#xff1a;绘制…...

组合模式:构建树形结构的艺术

引言:处理复杂对象结构的挑战 在软件开发中,我们常遇到需要处理部分-整体层次结构的场景: 文件系统中的文件与文件夹GUI中的容器与组件组织结构中的部门与员工菜单系统中的子菜单与菜单项组合模式正是为解决这类问题而生的设计模式。它允许我们将对象组合成树形结构来表示&…...

【NLP】 38. Agent

什么是 Agent&#xff1f; 一个 Agent 就是能够 理解、思考&#xff0c;并且进行世界交互 的模型系统&#xff0c;并不是纯粹的 prompt 返回器。 它可以&#xff1a; 读取外部数据&#xff08;文件/API&#xff09;使用记忆进行上下文维持用类Chain-of-Thought (CoT)方式进行…...