当前位置: 首页 > news >正文

Unity Bug记录本

//个人记录,持续更新

1、将此代码挂载到空脚本上:

bool flag = (object)GetComponent<Camera>() == null;
bool flag1 = (object)GetComponent<Text>() == null;
Debug.Log(flag+"::"+flag1);

//输出结果:False::True

bool flag = GetComponent<Camera>() == null;
bool flag1 = GetComponent<Text>() == null;
Debug.Log(flag+"::"+flag1);

//输出结果:True::True

原因:Unity C#7.0会出现此问题,似乎是因为unity底层重写了一些标识符

相关文章:

Unity Bug记录本

//个人记录&#xff0c;持续更新 1、将此代码挂载到空脚本上&#xff1a; bool flag (object)GetComponent<Camera>() null; bool flag1 (object)GetComponent<Text>() null; Debug.Log(flag"::"flag1); //输出结果&#xff1a;False::True bool…...

B. The Number of Products)厉害

You are given a sequence a1,a2,…,ana1,a2,…,an consisting of nn non-zero integers (i.e. ai≠0ai≠0). You have to calculate two following values: the number of pairs of indices (l,r)(l,r) (l≤r)(l≤r) such that al⋅al1…ar−1⋅aral⋅al1…ar−1⋅ar is neg…...

一起Talk Android吧(第五百一十二回:自定义Dialog)

文章目录整体思路实现方法第一步第二步第三步第四步各位看官们大家好&#xff0c;上一回中咱们说的例子是"自定义Dialog主题",这一回中咱们说的例子是" 自定义Dialog"。闲话休提&#xff0c;言归正转&#xff0c; 让我们一起Talk Android吧&#xff01;整体…...

GinVueAdmin源码分析3-整合MySQL

目录文件结构数据库准备配置文件处理config.godb_list.gogorm_mysql.gosystem.go初始化数据库gorm.gogorm_mysql.go开始初始化测试数据库定义实体类 Userserviceapi开始测试&#xff01;文件结构 本文章将使用到上一节创建的 CommonService 接口&#xff0c;用于测试连接数据库…...

大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——MapReduce开发总结

在编写MapReduce程序时&#xff0c;需要考虑如下几个方面&#xff1a; 1、输入数据接口&#xff1a;InputFormat 默认使用的实现类是&#xff1a;TextInputFormatTextInputFormat的功能逻辑是&#xff1a;一次读一行文本&#xff0c;然后将该行的起始偏移量作为key&#xff0…...

requests---(4)发送post请求完成登录

前段时间写过一个通过cookies完成登录&#xff0c;今天我们写一篇通过post发送请求完成登录豆瓣网 模拟登录 1、首先找到豆瓣网的登录接口 打开豆瓣网站的登录接口&#xff0c;请求错误的账号密码&#xff0c;通过F12或者抓包工具找到登录接口 通过F12抓包获取到请求登录接口…...

Python抓取数据具体流程

之前看了一段有关爬虫的网课深有启发&#xff0c;于是自己也尝试着如如何过去爬虫百科“python”词条等相关页面的整个过程记录下来&#xff0c;方便后期其他人一起来学习。 抓取策略 确定目标&#xff1a;重要的是先确定需要抓取的网站具体的那些部分&#xff0c;下面实例是…...

【Python学习笔记】第二十四节 Python 正则表达式

一、正则表达式简介正则表达式&#xff08;regular expression&#xff09;是一个特殊的字符序列&#xff0c;它能帮助你方便的检查一个字符串是否与某种模式匹配。正则表达式是对字符串&#xff08;包括普通字符&#xff08;例如&#xff0c;a 到 z 之间的字母&#xff09;和特…...

数字逻辑基础:原码、反码、补码

时间紧、不理解可以只看这里的结论 正数的原码、反码、补码相同。等于真值对应的机器码。 负数的原码等于机器码&#xff0c;反码为原码的符号位不变&#xff0c;其余各位按位取反。补码为反码1。 三种码的出现是为了解决计算问题并简化电路结构。 在原码和反码中&#xff0c;存…...

有限差分法-差商公式及其Matlab实现

2.1 有限差分法 有限差分法 (finite difference method)是一种数值求解偏微分方程的方法,它将偏微分方程中的连续变量离散化为有限个点上的函数值,然后利用差分逼近导数,从而得到一个差分方程组。通过求解差分方程组,可以得到原偏微分方程的数值解。 有限差分法是一种历史…...

高校就业信息管理系统

1引言 1.1编写目的 1.2背景 1.3定义 1.4参考资料 2程序系统的结构 3登录模块设计说明一 3.1程序描述 3.2功能 3.3性能 3.4输人项 3.5输出项 3.6算法 3.7流程逻辑 3.8接口 3.10注释设计 3.11限制条件 3.12测试计划 3.13尚未解决的问题 4注册模块设计说明 4.…...

【Java|golang】2373. 矩阵中的局部最大值

给你一个大小为 n x n 的整数矩阵 grid 。 生成一个大小为 (n - 2) x (n - 2) 的整数矩阵 maxLocal &#xff0c;并满足&#xff1a; maxLocal[i][j] 等于 grid 中以 i 1 行和 j 1 列为中心的 3 x 3 矩阵中的 最大值 。 换句话说&#xff0c;我们希望找出 grid 中每个 3 x …...

根据指定函数对DataFrame中各元素进行计算

【小白从小学Python、C、Java】【计算机等级考试500强双证书】【Python-数据分析】根据指定函数对DataFrame中各元素进行计算以下错误的一项是?import numpy as npimport pandas as pdmyDict{A:[1,2],B:[3,4]}myDfpd.DataFrame(myDict)print(【显示】myDf)print(myDf)print(【…...

【蓝桥杯集训·每日一题】AcWing 3502. 不同路径数

文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴一、题目 1、原题链接 3502. 不同路径数 2、题目描述 给定一个 nm 的二维矩阵&#xff0c;其中的每个元素都是一个 [1,9] 之间的正整数。 从矩阵中的任意位置出发&#xf…...

Java - 数据结构,二叉树

一、什么是树 概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。它具有以下的特点&#xff1a; 1、有…...

模拟QQ登录-课后程序(JAVA基础案例教程-黑马程序员编著-第十一章-课后作业)

【案例11-3】 模拟QQ登录 【案例介绍】 1.案例描述 QQ是现实生活中常用的聊天工具&#xff0c;QQ登录界面看似小巧、简单&#xff0c;但其中涉及的内容却很多&#xff0c;对于初学者练习Java Swing工具的使用非常合适。本案例要求使用所学的Java Swing知识&#xff0c;模拟实…...

【壹】嵌入式系统硬件基础

随手拍拍&#x1f481;‍♂️&#x1f4f7; 日期: 2023.2.28 地点: 杭州 介绍: 日子像旋转毒马&#x1f40e;&#xff0c;在脑海里转不停&#x1f92f; &#x1f332;&#x1f332;&#x1f332;&#x1f332;&#x1f332; 往期回顾 &#x1f332;&#x1f332;&#x1f332…...

当参数调优无法解决kafka消息积压时可以这么做

今天的议题是&#xff1a;如何快速处理kafka的消息积压 通常的做法有以下几种&#xff1a; 增加消费者数增加 topic 的分区数&#xff0c;从而进一步增加消费者数调整消费者参数&#xff0c;如max.poll.records增加硬件资源 常规手段不是本文的讨论重点或者当上面的手段已经使…...

Java线程池源码分析

Java 线程池的使用&#xff0c;是面试必问的。下面我们来从使用到源码整理一下。 1、构造线程池 通过Executors来构造线程池 1、构造一个固定线程数目的线程池&#xff0c;配置的corePoolSize与maximumPoolSize大小相同&#xff0c; 同时使用了一个无界LinkedBlockingQueue存…...

手撕八大排序(下)

目录 交换排序 冒泡排序&#xff1a; 快速排序 Hoare法 挖坑法 前后指针法【了解即可】 优化 再次优化&#xff08;插入排序&#xff09; 迭代法 其他排序 归并排序 计数排序 排序总结 结束了上半章四个较为简单的排序&#xff0c;接下来的难度将会大幅度上升&…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...