当前位置: 首页 > news >正文

【案例教程】拉格朗日粒子扩散模式FLEXPART

拉格朗日粒子扩散模式FLEXPART通过计算点、线、面或体积源释放的大量粒子的轨迹,来描述示踪物在大气中长距离、中尺度的传输、扩散、干湿沉降和辐射衰减等过程。该模式既可以通过时间的前向运算来模拟示踪物由源区向周围的扩散,也可以通过后向运算来确定对于固定站点有影响的潜在源区分布。

本次内容采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出地讲解FLEXPART扩散模式在研究大气污染物源-汇关系中需要掌握的经验和技巧。

【原文链接】: 【案例教程】拉格朗日粒子扩散模式FLEXPART实践技术应用


【方式】: 全套视频+永久回放+长期答疑群辅助+课件资料

【特色】:

  1. 原理深入浅出的讲解;

  1. 技巧方法讲解,提供所有案例数据及代码;

  1. 与项目案例相结合讲解实现方法,对接实际工作应用 ;

  1. 跟学上机操作、独立完成案例操作练习、全程问题跟踪解析;

  1. 专属助学群辅助巩固学习及实际工作应用交流,不定期召开线上答疑;

【证书及学时】:

学习本次内容可以获得《FLEXPART模式技术应用》专业技能培训证书及学时证明,网上可查。此证书可作为个人学习和知识更新、单位在职人员专业技能素质培养及单位人才聘用重要参考依据。

【内容介绍】:

《专题一、FLEXPART模式简介及Linux系统安装 》:

  1. 拉格朗日粒子扩散模式简介

  1. FLEXPART模式简介及下载安装

  1. Linux系统安装

  1. FLEXPART 模式运行需要的其他工具

《专题二、FLEXPART模式数据输入、模式运行及结果输出 》:

  1. 气象场数据的获取

  1. 模式参数的设定

Pathnames内容设置

Command 参数设置

Release 参数设置

Outgrid 参数设置

  1. FLEXPART模式运行

  1. FLEXPART模式运行结果分析

案例:对FLEXPART模式运行结果进行分析

《专题三、FLEXPART模式大气污染研究中的应用 》:

  1. 区域对受体点的源贡献

案例:不同区域对某一站点的贡献

  1. 其他应用

相关文章:

【案例教程】拉格朗日粒子扩散模式FLEXPART

拉格朗日粒子扩散模式FLEXPART通过计算点、线、面或体积源释放的大量粒子的轨迹,来描述示踪物在大气中长距离、中尺度的传输、扩散、干湿沉降和辐射衰减等过程。该模式既可以通过时间的前向运算来模拟示踪物由源区向周围的扩散,也可以通过后向运算来确定…...

试题 算法训练 自行车停放

问题描述 有n辆自行车依次来到停车棚,除了第一辆自行车外,每辆自行车都会恰好停放在已经在停车棚里的某辆自行车的左边或右边。(e.g.停车棚里已经有3辆自行车,从左到右编号为:3,5,1。现在编号为2的第4辆自行车要停在5号自行车的左…...

泛型与Map接口

Java学习之道 泛型 泛型这种参数类型可以用在类、方法和接口中,分别被称为泛型类,泛型方法,泛型接口 参数化类型:将类型由原来的具体的类型参数化,在使用/调用时传入具体的类型JDK5引入特性提供了安全检测机制&#xf…...

Unity Bug记录本

//个人记录&#xff0c;持续更新 1、将此代码挂载到空脚本上&#xff1a; bool flag (object)GetComponent<Camera>() null; bool flag1 (object)GetComponent<Text>() null; Debug.Log(flag"::"flag1); //输出结果&#xff1a;False::True bool…...

B. The Number of Products)厉害

You are given a sequence a1,a2,…,ana1,a2,…,an consisting of nn non-zero integers (i.e. ai≠0ai≠0). You have to calculate two following values: the number of pairs of indices (l,r)(l,r) (l≤r)(l≤r) such that al⋅al1…ar−1⋅aral⋅al1…ar−1⋅ar is neg…...

一起Talk Android吧(第五百一十二回:自定义Dialog)

文章目录整体思路实现方法第一步第二步第三步第四步各位看官们大家好&#xff0c;上一回中咱们说的例子是"自定义Dialog主题",这一回中咱们说的例子是" 自定义Dialog"。闲话休提&#xff0c;言归正转&#xff0c; 让我们一起Talk Android吧&#xff01;整体…...

GinVueAdmin源码分析3-整合MySQL

目录文件结构数据库准备配置文件处理config.godb_list.gogorm_mysql.gosystem.go初始化数据库gorm.gogorm_mysql.go开始初始化测试数据库定义实体类 Userserviceapi开始测试&#xff01;文件结构 本文章将使用到上一节创建的 CommonService 接口&#xff0c;用于测试连接数据库…...

大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——MapReduce开发总结

在编写MapReduce程序时&#xff0c;需要考虑如下几个方面&#xff1a; 1、输入数据接口&#xff1a;InputFormat 默认使用的实现类是&#xff1a;TextInputFormatTextInputFormat的功能逻辑是&#xff1a;一次读一行文本&#xff0c;然后将该行的起始偏移量作为key&#xff0…...

requests---(4)发送post请求完成登录

前段时间写过一个通过cookies完成登录&#xff0c;今天我们写一篇通过post发送请求完成登录豆瓣网 模拟登录 1、首先找到豆瓣网的登录接口 打开豆瓣网站的登录接口&#xff0c;请求错误的账号密码&#xff0c;通过F12或者抓包工具找到登录接口 通过F12抓包获取到请求登录接口…...

Python抓取数据具体流程

之前看了一段有关爬虫的网课深有启发&#xff0c;于是自己也尝试着如如何过去爬虫百科“python”词条等相关页面的整个过程记录下来&#xff0c;方便后期其他人一起来学习。 抓取策略 确定目标&#xff1a;重要的是先确定需要抓取的网站具体的那些部分&#xff0c;下面实例是…...

【Python学习笔记】第二十四节 Python 正则表达式

一、正则表达式简介正则表达式&#xff08;regular expression&#xff09;是一个特殊的字符序列&#xff0c;它能帮助你方便的检查一个字符串是否与某种模式匹配。正则表达式是对字符串&#xff08;包括普通字符&#xff08;例如&#xff0c;a 到 z 之间的字母&#xff09;和特…...

数字逻辑基础:原码、反码、补码

时间紧、不理解可以只看这里的结论 正数的原码、反码、补码相同。等于真值对应的机器码。 负数的原码等于机器码&#xff0c;反码为原码的符号位不变&#xff0c;其余各位按位取反。补码为反码1。 三种码的出现是为了解决计算问题并简化电路结构。 在原码和反码中&#xff0c;存…...

有限差分法-差商公式及其Matlab实现

2.1 有限差分法 有限差分法 (finite difference method)是一种数值求解偏微分方程的方法,它将偏微分方程中的连续变量离散化为有限个点上的函数值,然后利用差分逼近导数,从而得到一个差分方程组。通过求解差分方程组,可以得到原偏微分方程的数值解。 有限差分法是一种历史…...

高校就业信息管理系统

1引言 1.1编写目的 1.2背景 1.3定义 1.4参考资料 2程序系统的结构 3登录模块设计说明一 3.1程序描述 3.2功能 3.3性能 3.4输人项 3.5输出项 3.6算法 3.7流程逻辑 3.8接口 3.10注释设计 3.11限制条件 3.12测试计划 3.13尚未解决的问题 4注册模块设计说明 4.…...

【Java|golang】2373. 矩阵中的局部最大值

给你一个大小为 n x n 的整数矩阵 grid 。 生成一个大小为 (n - 2) x (n - 2) 的整数矩阵 maxLocal &#xff0c;并满足&#xff1a; maxLocal[i][j] 等于 grid 中以 i 1 行和 j 1 列为中心的 3 x 3 矩阵中的 最大值 。 换句话说&#xff0c;我们希望找出 grid 中每个 3 x …...

根据指定函数对DataFrame中各元素进行计算

【小白从小学Python、C、Java】【计算机等级考试500强双证书】【Python-数据分析】根据指定函数对DataFrame中各元素进行计算以下错误的一项是?import numpy as npimport pandas as pdmyDict{A:[1,2],B:[3,4]}myDfpd.DataFrame(myDict)print(【显示】myDf)print(myDf)print(【…...

【蓝桥杯集训·每日一题】AcWing 3502. 不同路径数

文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴一、题目 1、原题链接 3502. 不同路径数 2、题目描述 给定一个 nm 的二维矩阵&#xff0c;其中的每个元素都是一个 [1,9] 之间的正整数。 从矩阵中的任意位置出发&#xf…...

Java - 数据结构,二叉树

一、什么是树 概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。它具有以下的特点&#xff1a; 1、有…...

模拟QQ登录-课后程序(JAVA基础案例教程-黑马程序员编著-第十一章-课后作业)

【案例11-3】 模拟QQ登录 【案例介绍】 1.案例描述 QQ是现实生活中常用的聊天工具&#xff0c;QQ登录界面看似小巧、简单&#xff0c;但其中涉及的内容却很多&#xff0c;对于初学者练习Java Swing工具的使用非常合适。本案例要求使用所学的Java Swing知识&#xff0c;模拟实…...

【壹】嵌入式系统硬件基础

随手拍拍&#x1f481;‍♂️&#x1f4f7; 日期: 2023.2.28 地点: 杭州 介绍: 日子像旋转毒马&#x1f40e;&#xff0c;在脑海里转不停&#x1f92f; &#x1f332;&#x1f332;&#x1f332;&#x1f332;&#x1f332; 往期回顾 &#x1f332;&#x1f332;&#x1f332…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...