YOLOX 学习笔记
文章目录
- 前言
- 一、YOLOX贡献和改进
- 二、YOLOX架构改进
- 总结
前言
在计算机视觉领域,实时对象检测技术一直是一个热门的研究话题。YOLO(You Only Look Once)系列作为其中的佼佼者,以其高效的检测速度和准确性,广泛应用于各种实时视觉处理任务。YOLOX引入了一系列创新的方法和技术,进一步提升了检测性能,尤其在处理速度和准确性的平衡方面取得了显著进步。本文将详细探讨YOLOX的主要贡献和改进以及其网络架构的创新之处。
一、YOLOX贡献和改进
YOLOX主要贡献和创新点包括:
-
Anchor-Free Approach: YOLOX将原本的YOLO检测器转变为了一个anchor-free(无锚点)的方式,这意味着它不依赖于预设的锚点来预测对象的位置,而是直接预测对象的边界框。
-
Decoupled Head and Advanced Detection Techniques: 采用了解耦头(decoupled head)和其他先进的检测技术,例如SimOTA标签分配策略,这些技术的结合显著提高了模型的性能。
-
Performance Across Different Model Sizes: YOLOX在不同大小的模型上表现出了优越的性能,从小型的YOLO-Nano到大型的YOLOX-L,都在各自领域实现了最先进的结果。
-
Efficiency and Accuracy: YOLOX在保持高帧率(FPS)的同时提高了准确度(AP),这对于实时应用非常重要。
-
Winning the Streaming Perception Challenge: YOLOX的一个版本在2021年CVPR的Streaming Perception Challenge中获得了第一名,这证明了其在实时处理方面的强大能力。
总的来说,YOLOX通过引入无锚点方法、解耦头、先进的标签分配策略等创新,大幅提高了YOLO系列在各种模型大小上的性能,特别是在准确度和实时处理能力方面。这些改进使得YOLOX成为了在实际场景中非常有用的工具,特别是在需要快速且准确目标检测的应用中。
二、YOLOX架构改进
YOLOX的网络架构改进涉及以下几个主要方面:
-
从YOLOv3出发:YOLOX选择YOLOv3作为基线模型,采用Darknet53作为主干网络和SPP层。相比于原始的YOLOv3实现,YOLOX在训练策略上进行了一些调整,如增加了EMA权重更新、余弦学习率调度、IoU损失和IoU感知分支。
-
解耦头:为了解决分类和回归任务之间的冲突,YOLOX引入了解耦头。在实验中表明,解耦头相比于耦合头能够提高收敛速度,并对端到端YOLO的版本至关重要。
-
锚点自由(Anchor-Free):YOLOX摒弃了基于锚点的检测方法,转而采用锚点自由的方式。这种方式大大减少了设计参数的数量,简化了检测器的训练和解码阶段。
-
强大的数据增强:YOLOX引入了Mosaic和MixUp这两种强大的数据增强策略来提升性能。
-
多正样本(Multi Positives):为了解决正负样本不平衡的问题,YOLOX采用了多正样本的策略,选择对象中心的位置以及中心3×3区域的其他高质量预测作为正样本。
-
SimOTA:高级标签分配策略:SimOTA是一个高级的标签分配策略,它基于损失/质量感知、中心优先、动态正样本数量和全局视野的四个关键洞察。SimOTA通过简化的动态top-k策略获取近似解,有效减少了训练时间,同时提高了性能。
-
端到端YOLO:YOLOX还尝试了端到端的方法,即在检测过程中不进行后处理,但这会略微降低性能和推理速度。因此,这被视为一个可选模块,不包含在最终模型中。
总结
YOLOX通过一系列的创新性改进,如引入锚点自由方法、解耦头和SimOTA标签分配策略,显著提高了模型的性能,尤其是在不同模型大小上的表现和实时处理能力。这些改进不仅提高了检测的准确性,同时也保持了高效的处理速度,使YOLOX成为了实时对象检测应用的强大工具。
相关文章:
YOLOX 学习笔记
文章目录 前言一、YOLOX贡献和改进二、YOLOX架构改进总结 前言 在计算机视觉领域,实时对象检测技术一直是一个热门的研究话题。YOLO(You Only Look Once)系列作为其中的佼佼者,以其高效的检测速度和准确性,广泛应用于…...
第3节:Vue3 v-bind指令
实例: <template><div><button v-bind:disabled"isButtonDisabled">点击我</button></div> </template><script> import { ref } from vue;export default {setup() {const isButtonDisabled ref(false);ret…...
Token 和 N-Gram、Bag-of-Words 模型释义
ChatGPT(GPT-3.5)和其他大型语言模型(Pi、Claude、Bard 等)凭何火爆全球?这些语言模型的运作原理是什么?为什么它们在所训练的任务上表现如此出色? 虽然没有人可以给出完整的答案,但…...
【go语言实践】基础篇 - 流程控制
if语句 go里面if不需要括号将条件表达式包含起来,这与python也有点类似 if 条件表达式 { } if num > 18 {// ... } else if num > 20 {// ... } else {// ... }需要注意的是go支持在if的条件表达式中直接定义一个变量,变量的作用域只在if范围内…...
Linux:gdb的简单使用
个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》《C》《Linux》 文章目录 前言一、前置理解二、使用总结 前言 gdb是Linux中的调试代码的工具 一、前置理解 我们都知道要调试一份代码,这份代码的发布模式必须是debug。那你知道在li…...
NestJS的微服务实现
1.1 基本概念 微服务基本概念:微服务就是将一个项目拆分成多个服务。举个简单的例子:将网站的登录功能可以拆分出来做成一个服务。 微服务分为提供者和消费者,如上“登录服务”就是一个服务提供者,“网站服务器”就是一个服务消…...
Debian 终端Shell命令行长路径改为短路径
需要修改bashrc ~/.bashrc先备份一份 cp .bashrc bashrc.backup编辑bashrc vim ~/.bashrc可以看到bashrc内容为 # ~/.bashrc: executed by bash(1) for non-login shells. # see /usr/share/doc/bash/examples/startup-files (in the package bash-doc) # for examples# If…...
Ansible变量是什么?如何实现任务的循环?
Ansible 利用变量存储整个 Ansible 项目文件中可重复使用的值,从而可以简化项目的创建和维护,并减少错误的发生率。在定义Ansible变量时,通常有如下三种范围的变量: global范围:从命令行或Ansible配置中设置的变量&am…...
随机梯度下降的代码实现
在单变量线性回归的机器学习代码中,我们讨论了批量梯度下降代码的实现,本篇将进行随机梯度下降的代码实现,整体和批量梯度下降代码类似,仅梯度下降部分不同: import numpy as np import pandas as pd import matplotl…...
渐进推导中常用的一些结论
标题很帅 STAR-RIS Enhanced Joint Physical Layer Security and Covert Communications for Multi-antenna mmWave Systems文章末尾的一个推导。 lim M → ∞ ∥ Φ ( w k ⊗ Θ r ) Ω r w H g ∗ ∥ 2 2 M lim M → ∞ Tr ( g T Ω r w ( w k ⊗ Θ r ) H Φ H Φ…...
网络安全等级保护V2.0测评指标
网络安全等级保护(等保V2.0)测评指标: 1、物理和环境安全 2、网络和通信安全 3、设备和计算安全 4、应用和数据安全 5、安全策略和管理制度 6、安全管理机构和人员 7、安全建设管理 8、安全运维管理 软件全文档获取:点我获取 1、物…...
java中list的addAll用法详细实例?
List 的 addAll() 方法用于将一个集合中的所有元素添加到另一个 List 中。下面是一个详细的实例,展示了 addAll() 方法的使用: java Copy code import java.util.ArrayList; import java.util.List; public class AddAllExample { public static v…...
关于学习计算机的心得与体会
也是隔了一周没有发文了,最近一直在准备期末考试,后来想了很久,学了这么久的计算机,这当中有些收获和失去想和各位正在和我一样在学习计算机的路上的老铁分享一下,希望可以作为你们碰到困难时的良药。先叠个甲…...
LLM之RAG理论(一)| CoN:腾讯提出笔记链(CHAIN-OF-NOTE)来提高检索增强模型(RAG)的透明度
论文地址:https://arxiv.org/pdf/2311.09210.pdf 检索增强语言模型(RALM)已成为自然语言处理中一种强大的新范式。通过将大型预训练语言模型与外部知识检索相结合,RALM可以减少事实错误和幻觉,同时注入最新知识。然而&…...
Android studio:打开应用程序闪退的问题2.0
目录 找到问题分析问题解决办法 找到问题 老生常谈,可能这东西真的很常见吧,在之前那篇文章中 linkhttp://t.csdnimg.cn/UJQNb 已经谈到了关于打开Androidstuidio开发的软件后明明没有报错却无法运行(具体表现为应用程序闪退的问题ÿ…...
Spring IoC如何存取Bean对象
小王学习录 IoC(Inversion of Control)1. 什么是IoC2. 什么是Spring IoC3. 什么是DI4. Spring IoC的作用 存储Bean对象1. 创建Bean2. 将Bean注册到Spring中. 取Bean对象.1. 获取Spring上下文信息使用ApplicationContext和BeanFactory的区别 2. 获取指定Bean对象 IoC(Inversion …...
【开源】基于Vue.js的实验室耗材管理系统
文末获取源码,项目编号: S 081 。 \color{red}{文末获取源码,项目编号:S081。} 文末获取源码,项目编号:S081。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 耗材档案模块2.2 耗材入库模块2.3 耗…...
Datawhale聪明办法学Python(task2Getting Started)
一、课程基本结构 课程开源地址:课程简介 - 聪明办法学 Python 第二版 章节结构: Chapter 0 安装 InstallationChapter 1 启航 Getting StartedChapter 2 数据类型和操作 Data Types and OperatorsChapter 3 变量与函数 Variables and FunctionsChapte…...
量化交易怎么操作?量化软件怎么选择比较好?(散户福利,建议收藏)
一:量化的具体操作步骤是什么呢?1. 数据获取:索取和收集金融市场数据。 2. 策略制定:制定数量交易策略,这包括制定投资目标、建立交易规则和风险控制机制等,这个过程需要不断优化和更新。 3. 编写算法&am…...
什么是 AWS IAM?如何使用 IAM 数据库身份验证连接到 Amazon RDS(上)
驾驭云服务的安全环境可能很复杂,但 AWS IAM 为安全访问管理提供了强大的框架。在本文中,我们将探讨什么是 AWS Identity and Access Management (IAM) 以及它如何增强安全性。我们还将提供有关使用 IAM 连接到 Amazon Relational Database Service (RDS…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...
