leetcode 股票问题全序列
1 只允许一次交易,121题,买卖股票的最佳时机
class Solution {/*给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。*/
public:int maxProfit(vector<int>& prices) {if(prices.size()<2){return 0;}int maxP=0x80000000;int minPrice=prices[0];for(int i=1;i<prices.size();i++){if(minPrice>prices[i]){minPrice=prices[i];}maxP=max(maxP,prices[i]-minPrice);}return maxP;}
};
2 可以交易多次,122题, 买卖股票的最佳时机2
class Solution {/*题目:给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
题解:
贪心
因为不限制交易次数,只要今天价格比昨天高,就交易,利润为正累加,最后的和就是最大的利润*/
public:int maxProfit(vector<int>& prices) {if(prices.size()<2){return 0;}int res=0;for(int i=0;i<prices.size()-1;i++){if(prices[i+1]>prices[i]){res+=(prices[i+1]-prices[i]);}}return res;}
};
3 最多2次交易,123题, 买卖股票的最佳时机3
class Solution {/*给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。题解:动态规划:dp[i][j] 中 i 表示第 i 天,j为 [0−4]五个状态,dp[i][j]表示第i天状态j所得最大现金j=0无操作 =1第一次买入,=2第一次卖出,=3第二次买入,=4第二次卖出|buy|buy|sell|sell|sell|buy|buy||---|---|----|----|----|---|---|| |当天第一次 保持卖出*/
public:int maxProfit(vector<int>& prices) {if(prices.size()<1){return 0;}// dp[i][j]表示第i天状态j所得最大现金vector<vector<int>>dp(prices.size(),vector<int>(5,0));// initdp[0][0]=0;dp[0][1]=-prices[0];dp[0][2]=0;//第一天就卖出 相当于第一次买入后又卖出了dp[0][3]=-prices[0];// 第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,// 然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少dp[0][4]=0;for(int i=1;i<prices.size();i++){// 1. 第i天无操作,则之前也是没有操作dp[i][0]=dp[i-1][0];// 2. 第i天第一次买入dp[i][1]=max(dp[i-1][1],//前一天买入,当天保持dp[i-1][0]-prices[i]//当天买入,前一天还是没有操作);// 3. 第i天第一次卖出dp[i][2]=max(dp[i-1][2],//前一天卖出,当天保持dp[i-1][1]+prices[i]//当天第一次卖出,前一天还是第一次买入);// 4. 第i天第二次买入dp[i][3]=max(dp[i-1][3],//前一天买入,当天保持dp[i-1][2]-prices[i]//当天买入,前一天还是第一次卖出);// 5. 第i天第二次卖出dp[i][4]=max(dp[i-1][4],//前一天卖出,当天保持dp[i-1][3]+prices[i]//当天第二次卖出,前一天还是第二次买入);}return dp[prices.size()-1][4];}
};
4. 最多k次交易,188题,买卖股票的最佳时间4
class Solution {/*题目:给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。题解:定义一个三维数组dp[n][k][2]这里n表示天数,dp[i][j][0]:表示第i天交易了j次时卖出后的累计最大利润dp[i][j][1]:表示第i天交易了j次时买入后的累计最大利润1. 第一次买入:要么前一天买入后保持,要么从初始态第一次买入dp[i][0][1]=max(dp[i-1][0][1],dp[i-1][0][0]-prices[i])第一次卖出(注意已经完成一次交易这里j=1):要么前一天卖出后保持,要么从前一天第一次买入后,当天卖出dp[i][1][0]=max(dp[i-1][1][0],dp[i-1][0][1]+prices[i])2. 第二次买入:要么前一天买入后保持,要么从前一天第一次卖出后当天第二次买入dp[i][1][1]=max(dp[i-1][1][1],dp[i-1][1][0]-prices[i])第二次卖出(注意已经完成一次交易这里j=2):要么前一天卖出后保持,要么从前一天第二次买入后,当天卖出dp[i][2][0]=max(dp[i-1][2][0],dp[i-1][1][1]+prices[i])...j. 第j次买入:要么前一天买入后保持,要么从前一天第j-1次卖出后当天第二次买入dp[i][j-1][1]=max(dp[i-1][j-1][1],dp[i-1][j-1][0]-prices[i])第二次卖出(注意已经完成一次交易这里j=j):要么前一天卖出后保持,要么从前一天第j次买入后,当天卖出dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j-1][1]+prices[i])initfor(int i = 0; i <= k; ++i) {dp[0][i][0] = 0;// 第一天,不管交易多少次,卖出都是0收入dp[0][i][1] = -prices[0]; // 第一天,不管交易多少次,买入的收入是-prices[0]}三维数组太高了进行压缩,从上面DP公式可以知道,可以去掉天数纬度,用二维数组dp[k][2]来表示则有:dp[j-1][1]=max(dp[j-1][1],dp[j-1][0]-prices[i])dp[j][0]=max(dp[j][0],dp[j-1][1]+prices[i])*/
public:int maxProfit122(vector<int>&prices){// 不限制次数的交易if(prices.size()<2){return 0;}int res=0;for(int i=0;i<prices.size()-1;i++){if(prices[i+1]>prices[i]){res+=prices[i+1]-prices[i];}}return res;}int maxProfit(int k, vector<int>& prices) {int n=prices.size();if(k>=n){// 类似122题,不限制次数的交易return maxProfit122(prices);}// dp[j][z]交易第j次z=0时候卖出后的收益,// dp[j][z]交易第j次z=1时候买入后的收益vector<vector<int>>dp(k+1,vector<int>(2,0));// init 根据三维降级而得,第一天for(int i=0;i<k;i++){dp[i][0]=0;//第一天无论交易多少次,卖出后的收益都是0dp[i][1]=-prices[0];//第一天无论交易多少次,买入后的收益都是-price[0]}for(int i=1;i<prices.size();i++){for(int j=1;j<=k;j++){dp[j-1][1]=max(dp[j-1][1],dp[j-1][0]-prices[i]);dp[j][0]=max(dp[j][0],dp[j-1][1]+prices[i]);}}return dp[k][0];}
};
相关文章:
leetcode 股票问题全序列
1 只允许一次交易,121题,买卖股票的最佳时机 class Solution {/*给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票…...
SpringBoot中日志的使用log4j2
SpringBoot中日志的使用log4j2 1、log4j2介绍 Apache Log4j2 是对 Log4j 的升级,它比其前身 Log4j 1.x 提供了重大改进,并提供了 Logback 中可用的许多改 进,同时修复了 Logback 架构中的一些问题,主要有: 异常处理…...
机械设备企业网站建设的效果如何
机械设备涵盖的类目比较广,其市场需求也是稳增不减,也因此无论大小企业都有增长的机会,当然这也需要靠谱的工具及正确的决策。 对机械设备企业来说,产品品质自然是首位,而向外打造品牌、扩展信息及拓客转化自然也是非…...
设计模式之结构型设计模式(二):工厂模式 抽象工厂模式 建造者模式
工厂模式 Factory 1、什么是工厂模式 工厂模式旨在提供一种统一的接口来创建对象,而将具体的对象实例化的过程延迟到子类或者具体实现中。有助于降低客户端代码与被创建对象之间的耦合度,提高代码的灵活性和可维护性。 定义了一个创建对象的接口&…...
算法模板之单链表图文讲解
🌈个人主页:聆风吟 🔥系列专栏:算法模板、数据结构 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. ⛳️使用数组模拟单链表讲解1.1 🔔为什么我们要使用数组去模拟单链表…...
【强化学习-读书笔记】表格型问题的 Model-Free 方法
参考 Reinforcement Learning, Second Edition An Introduction By Richard S. Sutton and Andrew G. Barto无模型方法 在前面的文章中,我们介绍的是有模型方法(Model-Based)。在强化学习中,"Model"可以理解为算法…...
【手撕算法系列】k-means
k-means k-means算法介绍 k-means算法介绍 K-means算法是一种用于聚类的迭代算法,它将数据集划分为K个簇,其中每个数据点属于与其最近的簇的中心。这个算法的目标是最小化簇内的平方和误差(簇内数据点与簇中心的距离的平方和)。 …...
D33|动态规划!启程!
1.动态规划五部曲: 1)确定dp数组(dp table)以及下标的含义 2)确定递推公式 3)dp数组如何初始化 4)确定遍历顺序 5)举例推导dp数组 2.动态规划应该如何debug 找问题的最好方式就是把…...
C语言----文件操作(二)
在上一篇文章中我们简单介绍了在C语言中文件是什么以及文件的打开和关闭操作,在实际工作中,我们不仅仅是要打开和关闭文件,二是需要对文件进行增删改写。本文将详细介绍如果对文件进行安全读写。 一,以字符形式读写文件ÿ…...
oracle 10046事件跟踪
10046事件是一个很好的排查sql语句执行缓慢的内部事件,具体设置方式如下: 根据10046事件跟踪SQL语句 1、 alter session set events 10046 trace name context forever,level 12; 2、执行SQL语句 3、关闭10046事件 alter session set events 10046 trace…...
微软自带浏览器Edge,无法关闭“保存历史记录网站的屏幕截图”解决方案
微软自带浏览器Edge,无法关闭“保存历史记录网站的屏幕截图”解决方案 吐槽1:Windows自带的Chrome内核版本的浏览器Microsofg Edge刚发布时可谓一股清流,启动速度快,占用内存较小,相信很多人也开始抛弃正代Chrome&…...
讲座 | 颠覆传统摄像方式乃至计算机视觉的“脉冲视觉”
传统相机拍摄视频时其实是以一定帧率进行采样,视频其实还是一串图片的集合,因此低帧率时会觉得视频卡,拍摄高速运动物体时会有运动模糊等等问题。然而你能想象这一切都可以被“脉冲视觉”这一前沿技术改变吗? 今天下午听了北京大学…...
uniGUI学习之UniHTMLMemo1富文本编辑器
1]系统自带的富文本编辑器 2]jQueryBootstarp富文本编辑器插件summernote.js 1]系统自带的富文本编辑器 1、末尾增加<p> 2、增加字体 3、解决滚屏问题 4、输入长度限制问题 5、显示 并 编辑 HTML源代码(主要是图片处理) 1、末尾增加<p> UniHTMLMemo1.Lines…...
详细教程 - 从零开发 鸿蒙harmonyOS应用 第四节 (鸿蒙Stage模型 登录页面 ArkTS版 推荐使用)
在鸿蒙OS中,Ability是应用程序提供的抽象功能,可以理解为一种功能。在应用程序中,一个页面即一种能力,如登录页面,即具有登录功能的能力。以下是对鸿蒙新建项目的登录代码功能的详细解读和工作流程的描述: …...
uniapp怎么实现授权登录
在Uniapp中实现授权登录通常涉及以下几个步骤: 创建登录按钮:在页面中创建一个按钮,用于触发登录操作。 获取用户授权:当用户点击登录按钮时,调用uni.login或uni.getUserInfo等API获取用户授权。 处理授权回调&#…...
从零开始:前端架构师的基础建设和架构设计之路
文章目录 一、引言二、前端架构师的职责三、基础建设四、架构设计思想五、总结《前端架构师:基础建设与架构设计思想》编辑推荐内容简介作者简介目录获取方式 一、引言 在现代软件开发中,前端开发已经成为了一个不可或缺的部分。随着互联网的普及和移动…...
椋鸟C语言笔记#26:数据在内存中的存储(大小端字节序)、浮点数的存储(IEEE754)
萌新的学习笔记,写错了恳请斧正。 目录 大小端字节序 什么是大小端 写一个判断大小端的程序 浮点数在内存中的存储(IEEE 754规则) 引入 存储规则解释 读取规则解释 1.阶码不全为0或全为1(规格化数) 2.阶码全为…...
设计模式——组合模式(结构型)
引言 组合模式是一种结构型设计模式, 你可以使用它将对象组合成树状结构, 并且能像使用独立对象一样使用它们。 问题 如果应用的核心模型能用树状结构表示, 在应用中使用组合模式才有价值。 例如, 你有两类对象: …...
鸿蒙小车之多任务调度实验
说到鸿蒙我们都会想到华为mate60:遥遥领先!我们一直领先! 我们这个小车也是采用的是鸿蒙操作系统,学习鸿蒙小车,让你遥遥领先于你的同学。 文章目录 前言一、什么是任务?为什么要有任务二、任务的状态三、任…...
【报错栏】(vue)Module not found: Error: Can‘t resolve ‘element-ui‘ in xxx
Module not found: Error: Cant resolve element-ui in xxx 报错原因是: 未安装 element-ui 依赖 解决: npm install element-ui 运行...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
