当前位置: 首页 > news >正文

5G_射频测试_接收机测量(五)

7.2 Reference sensitivity level
  • 接收灵敏度是表示接收机能解析出信号的最小功率(和接收机noise figure相关所以RX lineup的大部分工作就是在调整Gain达到最佳NF)
  • The throughput shall be ≥ 95%(BER:bit error rate 并不是L3call的tput)
  • 对不同调制的信号要求也不一样,高阶调制信号需要更高的分辨率所以调制阶数越高能达到的灵敏度越低
  • 但实际上我们只测试最低的调制方式用于验证硬件能力
  • 测试信号暂用的频谱只有1/4的载波带宽,所以在自己做波形的时候要功率的分配弄错了灵敏度的接错就相差了6dB(在5G初期仪表厂家也犯过一样的错)
  • Table 7.2.5-1: NR Wide Area BS reference sensitivity levels

BS channel

Sub-carrier

Reference

Reference sensitivity power level, PREFSENS (dBm)

bandwidth (MHz)

spacing (kHz)

measurement channel

f ≤ 3.0 GHz

3.0 GHz < f ≤ 4.2 GHz

4.2 GHz < f ≤ 6.0 GHz

5, 10, 15

15

G-FR1-A1-1 (Note 1)

-101

-100.7

-100.5

G-FR1-A1-10 (Note 3)

-101 (Note 2)

-100.7 (Note 2)

-100.5 (Note 2)

10, 15

30

G-FR1-A1-2 (Note 1)

-101.1

-100.8

-100.6

10, 15

60

G-FR1-A1-3 (Note 1)

-98.2

-97.9

-97.7

20, 25, 30, 40,

15

G-FR1-A1-4 (Note 1)

-94.6

-94.3

-94.1

50

G-FR1-A1-11 (Note 4)

-94.6 (Note 2)

-94.3 (Note 2)

-94.1 (Note 2)

20, 25, 30, 40, 50, 60, 70, 80, 90, 100

30

G-FR1-A1-5 (Note 1)

-94.9

-94.6

-94.4

20, 25, 30, 40, 50, 60, 70, 80, 90, 100

60

G-FR1-A1-6 (Note 1)

-95

-94.7

-94.5

7.3 Dynamic range
  • 用来验证上行抗干扰的能力
  • 在典型的信号下(信号功率太大会导致基站饱和(LNA)当然也不能太小)加入高斯白噪声,看基站是否能解码
  • the throughput shall be ≥ 95%
  • 经常会调高噪声,验证基站能对抗多大的干扰。或者降低有用信号的功率。总之就是改变信噪比。
  • Table 7.3.5-1: Wide Area BS dynamic range

BS channel bandwidth (MHz)

Subcarrier spacing (kHz)

Reference measurement channel

Wanted signal mean power (dBm)

Interfering signal mean power (dBm) / BWConfig

Type of interfering signal

5

15

G-FR1-A2-1

-70.4

-82.5

AWGN

30

G-FR1-A2-2

-71.1

10

15

G-FR1-A2-1

-70.4

-79.3

AWGN

30

G-FR1-A2-2

-71.1

60

G-FR1-A2-3

-68.1

7.4 In-band selectivity and blocking (除了dynamic range是测试抗干扰能那在operation band内如果有干扰了,那我们怎么测试基站的抗干扰性能)

7.4.1 Adjacent Channel Selectivity (ACS)

  • 在operation band内我们的腔体滤波器是没有办法过滤干扰的,只能靠数字滤波
  • 和Dynamic range不一样的是干扰信号可能是自己或其他基站的杂散信号,所以这次干扰信号就是和载波信号一样的调制信号
  • 那么调制信号有不同的阶数,并且阶数越高抗干扰越差,那这个case的测试信号一般就选用高阶的调制信号

Table 7.4.1.5-1: Base station ACS requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)

Wanted signal mean power (dBm)

Interfering signal mean power (dBm)

5, 10, 15, 20,
25, 30, 40, 50, 60, 70, 80, 90, 100
(Note 1)

PREFSENS + 6 dB

Wide Area BS: -52

Medium Range BS: -47

Local Area BS: -44

7.4.2 In-band blocking

  • Operating band 以内符合general 和narrow blocking的要求
  • 和wanted信号靠的很近是容易fail的case

in-band blocking requirement applies from FUL_low - ΔfOOB to FUL_high + ΔfOOB, excluding the downlink frequency range of the operating band

Table 7.4.2.5-0: ΔfOOB offset for NR operating bands

BS type

Operating band characteristics

ΔfOOB (MHz)

BS type 1-C

FUL_high – FUL_low ≤ 200 MHz

20

200 MHz < FUL_high – FUL_low ≤ 900 MHz

60

Table 7.4.2.5-1: Base station general blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)

Wanted signal mean power (dBm)

Interfering signal mean power (dBm)

Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)

Type of interfering signal

5, 10, 15, 20

PREFSENS + 6 dB

Wide Area BS: -43

Medium Range BS: -38

Local Area BS: -35

±7.5

5 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs

25, 30, 40, 50, 60, 70, 80, 90, 100

PREFSENS + 6 dB

Wide Area BS: -43

Medium Range BS: -38

Local Area BS: -35

±30

20 MHz DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs

NOTE: PREFSENS depends on the RAT. For NR, PREFSENS depends also on the BS channel bandwidth as specified in TS 38.104 [2], table 7.2.2-1, 7.2.2-2 and 7.2.2-3. For NB-IoT, PREFSENS depends also on the sub-carrier spacing as specified in tables 7.2-5, 7.2-6 and 7.2-8 of TS 36.141 [24].

Table 7.4.2.5-2: Base station narrowband blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)

Wanted signal mean power (dBm)

Interfering signal mean power (dBm)

5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100

(Note 1)

PREFSENS + 6 dB

Wide Area BS: -49

Medium Range BS: -44

Local Area BS: -41

NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that BS channel bandwidth

NOTE 2: PREFSENS depends on the BS channel bandwidth as specified in TS 38.104 [2], table 7.2.2-1, 7.2.2-2 and 7.2.2-3.

NOTE 3: 7.5 kHz shift is not applied to the wanted signal.

7.5 Out-of-band blocking

测完了带的抗干扰的验证就到带外了

特点测试耗时长

The CW interfering signal shall be swept with a step size of 1 MHz over than range 1 MHz to (FUL_low - ΔfOOB) MHz and (FUL_high + ΔfOOB) MHz to 12750 MHz.

Table 7.5.5.1-1: Out-of-band blocking performance requirement

Wanted signal mean power (dBm)

Interfering signal mean power (dBm)

Type of interfering signal

PREFSENS +6 dB
(Note 1)

-15

CW carrier

7.5.5.2 Co-location requirements

除了一般的带外blocking还有DL 频带的co-location 模拟TX有大功率落在接收频段

Table 7.5.5.2-1: Blocking performance requirement for NR BS when co-located with BS in other frequency bands.

Frequency range of interfering signal

Wanted signal mean power for WA BS (dBm)

Interfering signal mean power for WA BS (dBm)

Interfering signal mean power for MR BS (dBm)

Interfering signal mean power for LA BS (dBm)

Type of interfering signal

Frequency range of co-located downlink operating band

PREFSENS +6dB
(Note 1)

+16

+8

x (Note 2)

CW carrier

7.6 Receiver spurious emissions

一般没有问题,测试意义不大

The receiver spurious emissions power is the power of emissions generated or amplified in a receiver unit that appear at the antenna connector (for BS type 1-C) or at the TAB connector (for BS type 1-H). The requirements apply to all BS with separate RX and TX antenna connectors / TAB connectors.

NOTE: In this case for FDD operation the test is performed when both TX and RX are ON, with the TX antenna connectors / TAB connectors terminated.

For TDD connectors capable of transmit and receive ensure the transmitter is OFF.

Table 7.6.5.1-1: General BS receiver spurious emissions limits

Spurious frequency range

Basic limit

Measurement bandwidth

Notes

30 MHz – 1 GHz

-57 dBm

100 kHz

Note 1

1 GHz – 12.75 GHz

-47 dBm

1 MHz

Note 1, Note 2

12.75 GHz – 5th harmonic of the upper frequency edge of the UL operating band in GHz

-47 dBm

1 MHz

Note 1, Note 2, Note 3

7.7 Receiver intermodulation

two interfering RF signals can produce an interfering signal in the band of the desired channel

The throughput shall be ≥ 95%

Table 7.7.5-1: General intermodulation requirement

Base Station type

Wanted Signal mean power (dBm)

Mean power of interfering signals (dBm)

Type of interfering signals

Wide Area BS

PREFSENS + 6 dB

-52

Medium Range BS

PREFSENS + 6 dB

-47

See table 7.7.5-2

Table 7.7.5-2: Interfering signals for intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)

Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge (MHz)

Type of interfering signal (Note 3)

100

±7.48

CW

±25

20 MHz DFT-s-OFDM NR signal, (Note 2)

NOTE 1: For the 15 kHz subcarrier spacing, the number of RB is 25. For the 30 kHz subcarrier spacing, the number of RB is 10.

NOTE 2: For the 15 kHz subcarrier spacing, the number of RB is 100. For the 30 kHz subcarrier spacing, the number of RB is 50. For the 60 kHz subcarrier spacing, the number of RB is 24.

NOTE 3: The RBs shall be placed adjacent to the transmission bandwidth configuration edge which is closer to the Base Station RF Bandwidth edge.

7.8 In-channel selectivity

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations at the antenna connector

ACS是相邻信道的选择性,ICS就是载波内PRB的选择性,wanted signal摆在中心频点两边,interfering signal摆在另一边

Table 7.8.5-1: Wide Area BS in-channel selectivity

NR channel bandwidth

Subcarrier spacing

Reference measurement

Wanted signal mean power (dBm)

Interfering signal mean

Type of interfering signal

(MHz)

(kHz)

channel

f ≤ 3.0 GHz

3.0 GHz < f ≤ 4.2 GHz

4.2 GHz < f ≤ 6.0 GHz

power (dBm)

40, 50, 60, 70, 80, 90, 100

30

G-FR1-A1-5

-91.2

-90.8

-90.5

-71.4

DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs

NOTE: Wanted and interfering signal are placed adjacently around Fc, where the Fc is defined for BS channel bandwidth of the wanted signal according to the table 5.4.2.2-1 in TS 38.104 [2]. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal.

相关文章:

5G_射频测试_接收机测量(五)

7.2 Reference sensitivity level 接收灵敏度是表示接收机能解析出信号的最小功率&#xff08;和接收机noise figure相关所以RX lineup的大部分工作就是在调整Gain达到最佳NF&#xff09;The throughput shall be ≥ 95%&#xff08;BER&#xff1a;bit error rate 并不是L3ca…...

ESP32-HTTP_webServer库(Arduino)

ESP32-HTTP 介绍 ESP32是一款功能强大的微控制器&#xff0c;具有丰富的网络和通信功能。其中之一就是支持HTTP协议&#xff0c;这使得ESP32可以用于创建Web服务器。 HTTP是什么&#xff1f; HTTP&#xff08;Hyper Text Transfer Protocol&#xff09;&#xff0c;即超文本传…...

无法找到mfc100.dll的解决方法分享,如何快速修复mfc100.dll文件

在日常使用电脑时&#xff0c;我们可能会碰到一些系统错误提示&#xff0c;比如“无法找到mfc100.dll”的信息。这种错误通常会阻碍代码的执行或某些应用程序的启动。为了帮助您解决这一问题&#xff0c;本文将深入探讨其成因&#xff0c;并提供几种不同的mfc100.dll解决方案。…...

[VulnHub靶机渗透]:billu_b0x 快速通关

🍬 博主介绍👨‍🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收藏 == 养成习惯(一键三连)😋 🎉欢迎关注💗一起学习👍一起讨论⭐️一起进步…...

Docker安装开源Blog(Typecho)

前言 首先这个镜像是centos7.9进行安装PHP环境&#xff0c;然后挂载目录去运行的&#xff0c;镜像大概300MB左右&#xff0c;没学过PHP&#xff0c;没办法给Dockerfile文件 参考文章&#xff1a;Docker安装Typecho | D-y Blog感知不强&#xff0c;图一乐https://www.wlul.top…...

【Qt-license】误操作qt下载导致只能安装商业版试用十天,无法安装社区版

背景&#xff1a; 原本是为了学习qml&#xff0c;需要下载一个design studio&#xff0c;而这个需要比较新版的安装程序&#xff0c;但新版的安装程序官方都是online安装。于是从官网找下载链接。毕竟是英文的&#xff0c;又心急&#xff0c;误打误撞中我选择了商业版试用。 其…...

数据操作——缺失值处理

缺失值处理 缺失值的处理思路 如果想探究如何处理无效值, 首先要知道无效值从哪来, 从而分析可能产生的无效值有哪些类型, 在分别去看如何处理无效值 什么是缺失值 一个值本身的含义是这个值不存在则称之为缺失值, 也就是说这个值本身代表着缺失, 或者这个值本身无意义, 比如…...

【刷题笔记4】

动态规划题目汇总 斐波那契数列&#xff1a;1&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;8&#xff0c;13…… 递归一把解决三类问题&#xff1a;1.数据定义是按照递归的&#xff08;斐波那契数列&#xff09;。2.问题解法是按递归算法实现的。 3.数据…...

cuda二进制文件中到底有些什么

大家好。今天我们来讨论一下&#xff0c;相比gcc编译器编译的二进制elf文件&#xff0c;包含有 cuda kernel 的源文件编译出来的 elf 文件有什么不同呢&#xff1f; 之前研究过一点 tvm。从 BYOC 的框架中可以得知&#xff0c;前端将模型 partition 成 host 和 accel(accel 表…...

怎么从视频中提取动图?一个方法快速提取gif

视频以连续的方式播放一系列图像帧&#xff0c;通过每秒播放的帧数&#xff08;帧率&#xff09;来创做&#xff0c;由于GIF动图则以循环播放一系列静态图像帧的方式展现动画效果。由于视频的优势在于流畅的动画、丰富的细节和长时间播放&#xff0c;因此常用于电影、电视节目、…...

String字符串的比较和hash函数减少哈希冲突

1.为什么比较字符串通过hash值比通过字符串本身效率更高 比较两个字符串的哈希值相对于比较两个字符串本身的效率更高&#xff0c;原因如下&#xff1a; 哈希函数具有快速计算的特性&#xff1a;哈希函数可以将一个字符串转换为一个固定长度的哈希值。这个转换过程通常是非常…...

【数据库原理】(38)数据仓库

数据仓库&#xff08;Data Warehouse, DW&#xff09;是为了满足企业决策分析需求而设计的数据环境&#xff0c;它与传统数据库有明显的不同。 一.数据库仓库概述 定义: 数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合&#xff0c;用于支持企业管理和…...

C++17新特性(四)已有标准库的拓展和修改

这一部分介绍C17对已有标准库组件的拓展和修改。 1. 类型特征拓展 1.1 类型特征后缀_v 自从C17起&#xff0c;对所有返回值的类型特征使用后缀_v&#xff0c;例如&#xff1a; std::is_const_v<T>; // C17 std::is_const<T>::value; // C11这适用于所有返回值的…...

软件是什么?前端,后端,数据库

软件是什么&#xff1f; 由于很多东西没有实际接触&#xff0c;很难理解&#xff0c;对于软件的定义也是各种各样。但是我还是不理解&#xff0c;软件开发中的前端&#xff0c;后端&#xff0c;数据库到底有什么关系呢&#xff01; 这个问题足足困扰了三年半&#xff0c;练习时…...

Vue3+ElementUI 多选框中复选框和名字点击方法效果分离

现在的需求为 比如我点击了Option A &#xff0c;触发点击Option A的方法&#xff0c;并且复选框不会取消勾选&#xff0c;分离的方法。 <el-checkbox-group v-model"mapWork.model_checkArray.value"> <div class"naipTypeDom" v-for"item …...

设计模式篇章(4)——十一种行为型模式

这个设计模式主要思考的是如何分配对象的职责和将对象之间相互协作完成单个对象无法完成的任务&#xff0c;这个与结构型模式有点像&#xff0c;结构型可以理解为静态的组合&#xff0c;例如将不同的组件拼起来成为一个更大的组件&#xff1b;而行为型更是一种动态或者具有某个…...

Spring成长之路—Spring MVC

在分享SpringMVC之前&#xff0c;我们先对MVC有个基本的了解。MVC(Model-View-Controller)指的是一种软件思想&#xff0c;它将软件分为三层&#xff1a;模型层、视图层、控制层 模型层即Model&#xff1a;负责处理具体的业务和封装实体类&#xff0c;我们所知的service层、poj…...

架构篇05-复杂度来源:高可用

文章目录 计算高可用存储高可用高可用状态决策小结 今天&#xff0c;我们聊聊复杂度的第二个来源高可用。 参考维基百科&#xff0c;先来看看高可用的定义。 系统无中断地执行其功能的能力&#xff0c;代表系统的可用性程度&#xff0c;是进行系统设计时的准则之一。 这个定义…...

C#调用Newtonsoft.Json将bool序列化为int

使用Newtonsoft.Json将数据对象序列化为Json字符串时&#xff0c;如果有布尔类型的属性值时&#xff0c;一般会将bool类型序列化为字符串&#xff0c;true值序列化为true&#xff0c;false值序列化为false。如下面的类型序列化后的结果如下&#xff1a; public class UserInfo…...

【Linux系统编程】环境变量详解

文章目录 1. 环境变量的基本概念2. 如何理解呢&#xff1f;&#xff08;测试PATH&#xff09;2.1 切入点1查看具体的环境变量原因剖析常见环境变量 2.2 切入点2给PATH环境变量添加新路径将我们自己的命令拷贝到PATH已有路径里面 2.3 切入点3 3. 显示所有环境变量4. 测试HOME5. …...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...