P2PNet推理和训练
0、环境信息
Package Version
------------------------ ------------
certifi 2023.11.17
charset-normalizer 3.3.2
contourpy 1.2.0
cycler 0.12.1
easydict 1.11
filelock 3.13.1
fonttools 4.47.2
fsspec 2023.12.2
idna 3.6
importlib-resources 6.1.1
Jinja2 3.1.3
kiwisolver 1.4.5
MarkupSafe 2.1.4
matplotlib 3.8.2
mpmath 1.3.0
networkx 3.2.1
numpy 1.26.3
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu12 8.9.2.26
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu12 12.1.0.106
nvidia-nccl-cu12 2.18.1
nvidia-nvjitlink-cu12 12.3.101
nvidia-nvtx-cu12 12.1.105
opencv-python 4.9.0.80
packaging 23.2
pandas 2.2.0
pillow 10.2.0
pip 23.3.1
protobuf 4.25.2
pyparsing 3.1.1
python-dateutil 2.8.2
pytz 2023.3.post1
requests 2.31.0
scipy 1.12.0
setuptools 68.2.2
six 1.16.0
sympy 1.12
tensorboardX 2.6.2.2
torch 2.1.2
torchvision 0.16.2
triton 2.1.0
typing_extensions 4.9.0
tzdata 2023.4
urllib3 2.1.0
wheel 0.41.2
zipp 3.17.0
1、测试
下载模型
根据url下载,并修改模型的相关路径
运行测试
CUDA_VISIBLE_DEVICES=0 python run_test.py --weight_path ./weights/SHTechA.pth --output_dir ./logs/
报错1:
from torchvision.ops import _new_empty_tensor
connot import name '_new_empty_tensor'
原因:版本问题
解决方式:将misc.py里的if语句注释到

报错2:
img_raw = img_raw.resize((new_width, new_height), Image.ANTIALIAS)
AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS'
原因:原来是在pillow的10.0.0版本中,ANTIALIAS方法被删除了,使用新的方法即可
解决方式:
将Image.LANCZOS替换为Image.Resampling.LANCZOS
运行成功
此时需要你先创建logs文件,要不然看不到预测的图片。
2、训练
数据下载

生成list
分别修改dataset_path 和output_path 来生成两个对应的list
import os# 设置数据集目录
dataset_path = '/dev_path/qiuzx/datasets/01CrowdCounting/part_A_final/test_data'# 设置输出的train.txt文件路径
output_path = './test.list'# 获取images文件夹下的所有.jpg文件
image_files = [f for f in os.listdir(os.path.join(dataset_path, 'images')) if f.endswith('.jpg')]# 打开train.txt文件以写入模式
with open(output_path, 'w') as f:# 遍历每个.jpg文件并写入train.txtfor image_file in image_files:# 构造图片和对应txt文件的路径image_path = os.path.join(dataset_path, 'images', image_file)txt_path = os.path.join(dataset_path, 'txt', 'GT_' + os.path.splitext(image_file)[0] + '.txt')# 检查txt文件和对应的jpg文件是否存在if os.path.exists(txt_path) and os.path.exists(image_path):# 写入train.txt文件f.write(f"{image_path} {txt_path}\n")else:print(f"Skipping pair: {image_path}, {txt_path} as one or both files do not exist.")
修改list的位置

运行
CUDA_VISIBLE_DEVICES=0 python train.py --data_root ../01CrowdCounting/part_A_final --dataset_file SHHA --epochs 3500 --lr_drop 3500 --output_dir ./logs --checkpoints_dir ./weights/train --tensorboard_dir ./logs --lr 0.0001 --lr_backbone 0.00001 --batch_size 8 --eval_freq 1 --gpu_id 0
运行成功

相关文章:
P2PNet推理和训练
0、环境信息 Package Version ------------------------ ------------ certifi 2023.11.17 charset-normalizer 3.3.2 contourpy 1.2.0 cycler 0.12.1 easydict 1.11 filelock …...
pyexecjs原生js加密算法逆向
查看必要参数,得知sign签名 从堆栈自上到下依次查找源代码 如下图,找到后打上断点,得知e是输入的参数,说明b()是一个加密函数,点击进入查看底层函数 把1117这个函数内的三个方法CV到python中的一个js文件中,…...
数据结构Java版(4)——链表
一、概述 链表是一种常见的数据结构,用于存储一系列具有相同类型的数据元素。它由多个节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。 链表与数组不同,它的节点在内存中不是连续存储的,而是通过每个节点中的指针…...
cfssl简单使用
1、安装 方式1:直接下载 详见:手动生成证书 | Kubernetes # 1、下载cfssl、cfssljson、cfssl-certinfo # cfssl:用于签发证书 # cfssljson:将cfssl签发生成的证书(json格式)变成文件承载式文件 # cfssl-certinfo:验…...
基于Word2vec词聚类的关键词实现
一.基于Word2vec词聚类的关键词步骤 基于Word2Vec的词聚类关键词提取包括以下步骤: 1.准备文本数据:收集或准备文本数据,可以是单一文档或文档集合,涵盖关键词提取的领域。2.文本预处理:清洗文本数据,去除…...
开源项目_大模型应用_Chat2DB
1 基本信息 项目地址:https://github.com/chat2db/Chat2DBStar:10.7K 2 功能 Chat2DB 是一个智能且多功能的 SQL 客户端和报表工具,适用于各种数据库。 对于那些平时会用到数据库,但又不是数据库专家的程序员来说,…...
【线性代数与矩阵论】范数理论
范数理论 2023年11月16日 文章目录 范数理论1. 向量的范数2. 常用向量范数3. 向量范数的等价性4. 矩阵的范数5. 常用的矩阵范数6. 矩阵范数与向量范数的相容性7. 矩阵范数诱导的向量范数8. 由向量范数诱导的矩阵范数9. 矩阵范数的酉不变性10. 矩阵范数的等价性11. 长方阵的范数…...
【C++】priority_queue模拟实现过程中值得注意的点
👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 🌝每一个不曾起舞的日子,都是对生命的辜负 前言 本篇文章旨在记录博主在模…...
Git提交 ssh: connect to host github.com port 22: Connection timed out解决方案
你们好,我是金金金。 场景 之前都是好好的,不知道今天为什么提交代码就这样了 排查 根据英文可以看出,ssh端口号被拒绝了,22号端口不行,那就换一个端口 造成error的原因 ssh端口被拒绝 解决 找到.ssh文件ÿ…...
Java调用WebService接口,SOAP协议HTTP请求返回XML对象
Java调用Web service接口SOAP协议HTTP请求,解析返回的XML字符串: 1. 使用Java的HTTP库发送SOAP请求,并接收返回的响应。 可以使用Java的HttpURLConnection、Apache HttpClient等库。 2. 将返回的响应转换为字符串。 3. 解析XML字符串&…...
Django框架二
一、模型层及ORM 1.模型层定义 负责跟数据库之间进行通信 2.Django配置mysql 安装mysqlclient,mysqlclient版本最好在13.13以上 pip3 install mysqlclient DATABASES {default: {ENGINE: django.db.backends.mysql,NAME: "mysite1",USER:root,PASSWO…...
工业相机与镜头参数及选型
文章目录 1、相机成像系统模型1.1 视场1.2 成像简化模型 2、工业相机参数2.1 分辨率2.2 靶面尺寸2.3 像元尺寸2.4 帧率/行频2.5 像素深度2.6 动态范围2.7 信噪比2.8 曝光时间2.9 相机接口 3、工业镜头参数3.1 焦距3.2 光圈3.3 景深3.4 镜头分辨率3.5 工作距离(Worki…...
VSCode使用Makefile Tools插件开发C/C++程序
提起Makefile,可能有人会觉得它已经过时了,毕竟现在有比它更好的工具,比如CMake,XMake,Meson等等,但是在Linux下很多C/C源码都是直接或者间接使用Makefile文件来编译项目的,可以说Makefile是基石…...
用C语言验证“三门定理”
#include <stdio.h> #include <stdbool.h> #include <stdlib.h> #include <time.h>// 一个源自博弈论的数学游戏问题: // 参赛者会看见三扇门, // 其中一扇门的里面有一辆汽车, // 选中里面是汽车的那扇门࿰…...
计算机网络-分层结构,协议,接口,服务
文章目录 总览为什么要分层怎样分层正式认识分层概念小结 总览 为什么要分层 发送文件前要做的准备工作很多 把这个准备工作分层小问题解决,也就分层解决 怎样分层 每层相互独立,每层做的工作不同 界面自然清晰,层与层之间的接口能够体现…...
前端开发 2: CSS
在前端开发中,CSS(层叠样式表)是一种用于描述网页样式的语言。它控制着网页的布局、颜色、字体等外观效果。在本篇博客中,我将为你介绍 CSS 的基础知识和常用技巧,帮助你更好地掌握前端开发中的样式设计。 CSS 基础知…...
嵌入式-Stm32-江科大基于标准库的GPIO4个小实验
文章目录 一 、硬件介绍二 、实验:LED闪烁、LED流水灯、蜂鸣器提示2.1 需求1:面包板上的LED以1s为周期进行闪烁。亮0.5s,灭0.5s.....2.2 需求2: 8个LED实现流水灯2.3 需求3:蜂鸣器不断地发出滴滴、滴滴.....的提示音。蜂鸣器低电平触发。 三、…...
HackTheBox - Medium - Linux - Noter
Noter Noter 是一种中型 Linux 机器,其特点是利用了 Python Flask 应用程序,该应用程序使用易受远程代码执行影响的“节点”模块。由于“MySQL”守护进程以用户“root”身份运行,因此可以通过利用“MySQL”的用户定义函数来利用它来获得RCE并…...
Uniapp多选Popup(弹出层)
uniapp中多选组件很少,故个人简单开发了一个,可简单使用,也可根据个人需求稍微改进 支持的功能 单选多选(默认)限制选择数量默认选中禁用选项 属性说明 属性默认值说明singlefalsetrue为开启单选,否则为…...
什么是网络安全?网络安全概况
网络安全涉及保护我们的计算机网络、设备和数据免受未经授权的访问或破坏。 这个领域包括多种技术、过程和控制措施,旨在保护网络、设备和数据免受攻击、损害或未授权访问。网络安全涉及多个方面,包括但不限于信息安全、应用程序安全、操作系统安全等 …...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...

