Optional lab: Linear Regression using Scikit-LearnⅠ
scikit-learn是一个开源的、可用于商业的机器学习工具包,此工具包包含本课程中需要使用的许多算法的实现
Goals
In this lab you will utilize scikit-learn to implement linear regression using Gradient Descent
Tools
You will utilize functions from scikit-learn as well as matplotlib and NumPy.
import numpy as np
np.set_printoptions(precision=2)
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.preprocessing import StandardScaler
from lab_utils_multi import load_house_data
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0';
plt.style.use('./deeplearning.mplstyle')
np.set_printoptions()
用于控制Python中小数的显示精度
np.set_printoptions(precision=None, threshold=None, linewidth=None, suppress=None, formatter=None)
precision:控制输出结果的精度(即小数点后的位数),默认值为8
threshold:当数组元素总数过大时,设置显示的数字位数,其余用省略号代替(当数组元素总数大于设置值,控制输出值得个数为6个,当数组元素小于或者等于设置值得时候,全部显示),当设置值为sys.maxsize(需要导入sys库),则会输出所有元素
linewidth:每行字符的数目,其余的数值会换到下一行
suppress:小数是否需要以科学计数法的形式输出
formatter:自定义输出规则
Gradient Descent
Scikit-learn有一个梯度下降回归模型sklearn.linear_model.SGDRegressor. 与之前的梯度下降实现一样,此模型在使用归一化输入时表现最佳
sklearn.preprocessing.StandardScaler 将像之前的lab一样执行z-score标准化,这里称为“标准分数”
Load the data set
X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']
Scale/Normalize the training data
scaler = StandardScaler()
X_norm = scaler.fit_transform(X_train)
print(f"Peak to Peak range by column in Raw X:{np.ptp(X_train,axis=0)}")
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X_norm,axis=0)}")
输出如下
Peak to Peak range by column in Raw X:[2.41e+03 4.00e+00 1.00e+00 9.50e+01]
Peak to Peak range by column in Normalized X:[5.85 6.14 2.06 3.69]
Create and fit the regression model
sgdr = SGDRegressor(max_iter=1000)
sgdr.fit(X_norm, y_train)
print(sgdr)
print(f"number of iterations completed: {sgdr.n_iter_}, number of weight updates: {sgdr.t_}")
输出如下
SGDRegressor()
number of iterations completed: 122, number of weight updates: 12079.0
View parameters
注意,这些参数与归一化的输入数据相关联,拟合参数与之前使用该数据的lab中的参数值非常接近
b_norm = sgdr.intercept_
w_norm = sgdr.coef_
print(f"model parameters: w: {w_norm}, b:{b_norm}")
print(f"model parameters from previous lab: w: [110.56 -21.27 -32.71 -37.97], b: 363.16")
输出如下
model parameters: w: [110.13 -21.06 -32.48 -38.05], b:[363.16]
model parameters from previous lab: w: [110.56 -21.27 -32.71 -37.97], b: 363.16
Make predictions
预测训练数据的目标,use both the predict
routine and compute using w w w and b b b
# make a prediction using sgdr.predict()
y_pred_sgd = sgdr.predict(X_norm)
# make a prediction using w,b.
y_pred = np.dot(X_norm, w_norm) + b_norm
print(f"prediction using np.dot() and sgdr.predict match: {(y_pred == y_pred_sgd).all()}")print(f"Prediction on training set:\n{y_pred[:4]}" )
print(f"Target values \n{y_train[:4]}")
输出如下
prediction using np.dot() and sgdr.predict match: True
Prediction on training set:
[295.19 485.88 389.58 492.04]
Target values
[300. 509.8 394. 540. ]
Plot Results
绘制预测值与目标值的关系图
# plot predictions and targets vs original features
fig,ax=plt.subplots(1,4,figsize=(12,3),sharey=True)
for i in range(len(ax)):ax[i].scatter(X_train[:,i],y_train, label = 'target')ax[i].set_xlabel(X_features[i])ax[i].scatter(X_train[:,i],y_pred,color=dlorange, label = 'predict')
ax[0].set_ylabel("Price"); ax[0].legend();
fig.suptitle("target versus prediction using z-score normalized model")
plt.show()
Congratulations!
In this lab you:
- 使用了一个开源的机器学习工具包scikit-learn
- 使用该工具包中的梯度下降和特征归一化实现了线性回归
相关文章:

Optional lab: Linear Regression using Scikit-LearnⅠ
scikit-learn是一个开源的、可用于商业的机器学习工具包,此工具包包含本课程中需要使用的许多算法的实现 Goals In this lab you will utilize scikit-learn to implement linear regression using Gradient Descent Tools You will utilize functions from sci…...

CentOS使用
1.使用SSH连接操作虚拟机中的CentOS 使用代理软件(MobaX/Xshell)通过ssh连接vmware中的虚拟机,可以摆脱vmware笨重的软件,直接在代理软件中进行操作. 包括使用云虚拟器,其实也只是在本地通过ssh连接别处的云服务商的硬件而已. 1.1 配置静态IP 为什么要配置静态IP? 想要使用…...

[SWPUCTF 2018]SimplePHP1
打开环境 有查看文件跟上传文件,查看文件里面显示没有文件url貌似可以文件读取 上传文件里面可以上传文件。 先看一下可不可以文件读取 /etc/passwd不能读取,源码提示flag在f1ag.php 看看能不能读取当前的文件, 先把代码摘下来 file.php …...
api管理工具的新发现
一、之前用过的api管理工具 关于api管理工具,之前用过yapi和postman,但是后来发现了这两个工具 二、新发现的更强大的:Apifox和Eolink Apifox和Eolink,那这两个工具有什么优势呢? 2.1Apifox 其中 Apifox Postman …...

2024 年 eBPF 和网络趋势预测
本文地址:2024 年 eBPF 和网络趋势预测 | 深入浅出 eBPF 1. eBPF 1.1 eBPF 将继续呈指数增长1.2 eBPF 应用市场1.3 eBPF 在手机中得到更广泛的应用1.4 eBPF 滥用带来的风险2. 可观测 2.1 最受欢迎的可观测性2.2 降低可观测性开销2.3 上下文感知的 Kubernetes 工作负…...

2024.1.27 GNSS 学习笔记
1.精确的描述轨道的一组数据(星历)是实现精确定位与导航的基础。 2.GNSS卫星广播星历的提供方式一般有两种:一种是提供开普勒轨道参数和必要的轨道摄动改正项参数,如GPS、BDS、Galileo三大系统采用此种模式,还有QZSS系统;另一种是…...

Unity - 将项目转为HDRP
Camera window -> Package Manager 之后会出现HDRP向导窗口,均点击修复。 在Edit中,更改项目中的材质...

ETCD高可用架构涉及常用功能整理
ETCD高可用架构涉及常用功能整理 1. etcd的高可用系统架构和相关组件1.1 Quorum机制1.2 Raft协议 2. etcd的核心参数2.1 常规配置2.2 特殊优化配置2.2.1 强行拉起新集群 --force-new-cluster2.2.2 兼容磁盘io性能差2.2.3 etcd存储quota 3. etcd常用命令3.1 常用基础命令3.1.1 列…...

深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化
深度学习很重要的预处理步骤 就是需要对做直方图均衡化 其中主要分成灰度图以及RGB图的直方图均衡化 这俩的方法和代码不同 想要去看具体原理的朋友可以查看下面这篇博客的内容 写的很详细颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html) 我们这个场景中会用…...

PyTorch深度学习实战(33)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)
PyTorch深度学习实战(33)——条件生成对抗网络 0. 前言1. 条件生成对抗网络1.1 模型介绍1.2 模型与数据集分析 2. 实现条件生成对抗网络小结系列链接 0. 前言 条件生成对抗网络 (Conditional Generative Adversarial Network, CGAN) 是一种生成对抗网络…...
编写Bash脚本程序从记录文件中提取history命令的优化,再介绍linux bash语法和结构
目 录 一、引言 二、脚本代码实现 三、bash语法和结构 (一)基本语法 1、脚本开始与结束 2、注释 3、变量 4、数据类型 5、控制结构 6、循环控制 7、函数 8、算术运算 9、算术操作符和逻辑操作符 (二)命令相关…...

Python中Numba库装饰器
一、运行速度是Python天生的短板 1.1 编译型语言:C 对于编译型语言,开发完成以后需要将所有的源代码都转换成可执行程序,比如 Windows 下的.exe文件,可执行程序里面包含的就是机器码。只要我们拥有可执行程序,就可以随…...

Spring Boot Aop 执行顺序
Spring Boot Aop 执行顺序 1. 概述 在 spring boot 项目中,使用 aop 增强,不仅可以很优雅地扩展功能,还可以让一写多用,避免写重复代码,例如:记录接口耗时,记录接口日志,接口权限&…...

100天精通鸿蒙从入门到跳槽——第16天:ArkTS条件渲染使用教程
博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》 — Go语言学习之旅!《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!100天…...

【Linux C | 进程】Linux 进程间通信的10种方式(1)
😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...

橘子学Mybatis08之Mybatis关于一级缓存的使用和适配器设计模式
前面我们说了mybatis的缓存设计体系,这里我们来正式看一下这玩意到底是咋个用法。 首先我们是知道的,Mybatis中存在两级缓存。分别是一级缓存(会话级),和二级缓存(全局级)。 下面我们就来看看这两级缓存。 一、准备工作 1、准备数据库 在此之…...

看图说话:Git图谱解读
很多新加入公司的同学在使用Git各类客户端管理代码的过程中对于Git图谱解读不太理解,我们常用的Git客户端是SourceTree,配合P4Merge进行冲突解决基本可以满足日常工作大部分需要。不同的Git客户端工具对图谱展示会有些许差异,以下是SourceTre…...
linux新增用户,指定home目录和bash脚本且加入到sudoer列表
前言 近3年一直用自动化脚本,搞得连useradd命令都不会用了。哈哈。 今天还碰到一个问题,有个系统没有‘useradd’和‘passwd’命令,直接蒙了。当然直接用apt install就能安装,不然还得自己编译折腾一会。新建用户 useradd -d /h…...

经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程
经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程 和之前实现的YOLOv2一样,根据《YOLO目标检测》(ISBN:9787115627094)一书,在不脱离YOLOv3的大部分核心理念的前提下,重构一款较新的YOLOv3检测器,来对YOLOv3有…...

OpenGL/C++_学习笔记(四)空间概念与摄像头
汇总页 上一篇: OpenGL/C_学习笔记(三) 绘制第一个图形 OpenGL/C_学习笔记(四)空间概念与摄像头 空间概念与摄像头前置科技树: 线性代数空间概念流程简述各空间相关概念详述 空间概念与摄像头 前置科技树: 线性代数 矩阵/向量定…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...