学习笔记——ENM模拟
学习笔记——ENM模拟
文章目录
- 前言
- 一、文献一
- 1. 材料与方法
- 1.1. 大致概念
- 1.2. 生态模型的构建
- 1.2.1. 数据来源:
- 1.2.2. 数据处理:
- 1.2.3. 模型参数优化:
- 1.3. 适生情况预测
- 1.3.1. 预测模型构建
- 1.3.2. 适生区划分
- 1.4. 模型的评估与验证
- 2. 结果与分析
- 2.1. 预测模型的构建
- 2.2. 潜在的适生分布预测
- 2.3. 生态模型的评估与验证
前言
学习文献里的方法,初步了解一下什么是ENM模拟
文献名称:
《基于MaxEnt模型和ArcGIS预测多肋藻在中国海域的适生分布特征》
一、文献一
1. 材料与方法
1.1. 大致概念
本研究采用MaxEnt 模型预测多肋藻在我国的适生情况, 并探究不同因子对多肋藻孢子体生长的影响,旨在为开展多肋藻栽培提供支撑。
关键词: 多肋藻; MaxEnt; ArcGIS; 生态风险; 适生分布
物种分布模型(species distribution model, SDM)
主要是根据物种特定的生存环境及存在的分布位点, 通过模型的数学算法模拟出其基本生态位, 可解释为物种出现的概率分布或生境适宜度等。
目前应用较广的 SDM有 BIOCLIM、CLIMEX、DOMAIN、GAM、GARP、MaxEnt、ENFA 等。
MaxEnt (maximum entropy)模型
是基于最大熵理论, 即假设物种在没有约束的情况下, 会尽最大可能扩散蔓延, 接近均匀分布。最大熵模型以物种仅存在分布信息及相关环境因子信息, 依靠数学模型来推算物种的生态需求, 并模拟物种在目标区域的适生概率。
1.2. 生态模型的构建
所采用的生态位预测模型为最大熵模型MaxEnt 3.4, 运用 ArcGIS 10.2 划分适生区
1.2.1. 数据来源:
物种分布数据
分布信息来源: 全球生物多样性信息网络 GBIF (https://www.gbif.org/zh/)和文献资料, 选取明确位置的分布点, 并通过地名数据库 GNDB(https://dmfw.mca.gov.cn/index.html)查验经纬度坐标信息。
最后整理成物种名–经度–纬度形式, 保存为*.CSV 格式文件
环境变量数据
来源于全球海洋生物扩散模型环境数据库 Bio-ORICLE (https://bio-oracle.org/)中基于 2000─2014 年期间月平均值的气候数据编制的图层, 其空间分辨率为 5 arcmin (约为9.2 km), 下载格式为*.asc 格式。选择影响海洋藻类分布的 42 项环境参数。

地图数据
选用 1∶400 万中国省级行政区图作为分析地图, 从国家基础地理信息系统网站(http://www.ngcc.cn/ngcc/)下载
推荐文章:
国家基础地理信息中心行政边界等矢量数据免费下载保姆级教程–关于地理数据收集与处理的基本工具推荐(7)
1.2.2. 数据处理:
分布数据的空间过滤
物种分布点的数据通过 Excel 删除重复点后, 将剩余分布位点导入 ArcGIS 中, 通过投影工具, 对分布点建立以 m 为单位的坐标系, 并以每个分布点为中心, 建立半径为 5 km 的圆型区域进行邻域分析,
删去重叠交叉的分布簌, 随机保留其中一个位点, 将最终保留下的分布点数据用于模型构建。
环境变量的相关性检验与筛选

下载ArcGIS软件:
https://zhuanlan.zhihu.com/p/670775519

下载 MaxEnt软件:
http://lucky-boy.ysepan.com/
(注意:这个网站有许多生物信息学相关资源。强烈推荐)

1.2.3. 模型参数优化:
正则化参数的优化

(训练集 : 测试集)比值的优化
设置 4 组训练集与测试集组合(50 : 50、70 : 30、75 : 25、80 : 20),
正则化参数取上述 8 组不同系数经 5–折交叉验证
后的最佳 β 值, 环境变量同上筛选, 并选择
随机种子设置, 其余参数为系统默认值, 每组重复
运行 10 次, 比较各组的平均测试 AUC 值, 选择最
高 AUC 值的训练集: 测试集组合用于模型构建
1.3. 适生情况预测
多肋藻在我国适生情况预测
1.3.1. 预测模型构建
将经 1.2.2处理的分布点、环境变量数据分别导入 MaxEnt 模型, 根据 1.2.3化结果设置正则化参数 β 以及训练集: 测试集参数, 构建环境变量响应曲线, 并采用刀切法检测环境变量的贡献值, 以 logistic 格式输出概率分布预测图。
1.3.2. 适生区划分

1.4. 模型的评估与验证

2. 结果与分析
结果与分析
2.1. 预测模型的构建
环境变量筛选
正则化参数的交叉验证和(训练集 : 测试
集)比值的筛选
2.2. 潜在的适生分布预测
2.3. 生态模型的评估与验证

相关文章:
学习笔记——ENM模拟
学习笔记——ENM模拟 文章目录 前言一、文献一1. 材料与方法1.1. 大致概念1.2. 生态模型的构建1.2.1. 数据来源:1.2.2. 数据处理:1.2.3. 模型参数优化: 1.3. 适生情况预测1.3.1. 预测模型构建1.3.2. 适生区划分 1.4. 模型的评估与验证 2. 结果…...
数值类型的运算方式总结
提纲1:常见的位运算使用场景 提纲2:整数类型运算时的类型溢出问题,产生原因以及解决办法 提纲3:浮点类型运算时的精度丢失问题,产生原因以及解决办法 数值类型(6种)分为: 整型&…...
【Redis快速入门】Redis三种集群搭建配置(主从集群、哨兵集群、分片集群)
个人名片: 🐼作者简介:一名大三在校生,喜欢AI编程🎋 🐻❄️个人主页🥇:落798. 🐼个人WeChat:hmmwx53 🕊️系列专栏:🖼️…...
[嵌入式系统-14]:常见实时嵌入式操作系统比较:RT-Thread、uC/OS-II和FreeRTOS、Linux
目录 一、实时嵌入式操作系统 1.1 概述 1.2 什么“实时” 1.3 什么是硬实时和软实时 1.4 什么是嵌入式 1.5 什么操作系统 二、常见重量级操作系统 三、常见轻量级嵌入式操作系统 3.1 概述 3.2 FreeRTOS 3.3 uC/OS-II 3.4 RT-Thread 3.5 RT-Thread、uC/OS-II、Free…...
基于AI Agent探讨:安全领域下的AI应用范式
先说观点:关于AI应用,通常都会聊准召。但在安全等模糊标准的场景下,事实上不存在准召的定义。因此,AI的目标应该是尽可能的“像人”。而想要评价有多“像人”,就先需要将人的工作数字化。而AI Agent是能够将数字化、自…...
Stable Diffusion 模型下载:ToonYou(平涂卡通)
本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十...
机器学习:分类决策树(Python)
一、各种熵的计算 entropy_utils.py import numpy as np # 数值计算 import math # 标量数据的计算class EntropyUtils:"""决策树中各种熵的计算,包括信息熵、信息增益、信息增益率、基尼指数。统一要求:按照信息增益最大、信息增益率…...
红队打靶练习:HACK ME PLEASE: 1
信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:69:c7:bf, IPv4: 192.168.61.128 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.61.2 00:50:56:f0:df:20 …...
《VulnHub》GoldenEye:1
title: 《VulnHub》GoldenEye:1 date: 2024-02-16 14:53:49 updated: 2024-02-16 15:08:49 categories: WriteUp:Cyber-Range excerpt: 主机发现、目标信息扫描、源码 js 文件泄露敏感信息、hydra 爆破邮件服务(pop3)、邮件泄露敏…...
html的表格标签
html的表格标签 table标签:表示整个表格tr:表示表格的一行td:表示一个单元格th:表示表头单元格.会居中加粗thead:表格的头部区域 (注意和th区分,范围是比th要大的).tbody:表格得到主体区域. table包含tr , tr包含td或者th. 表格标签有一些属性,可以用于设置大小边…...
蓝桥杯(Web大学组)2022省赛真题:展开你的扇子
思路: transform-origin: center bottom;使盒子旋转时,以底部的中心为坐标原点(题目已给出) 对每个盒子使用transform: rotate();实现旋转 笔记: 设置悬浮旋转时, #box div:hover #item6{ } 为什…...
复习基础知识1
局部变量 写程序时,程序员经常会用到局部变量 汇编中寄存器、栈,可写区段、堆,函数的局部变量该存在哪里呢? 注意:局部变量有易失性 一旦函数返回,则所有局部变量会失效。 考虑到这种特性,人们…...
java8-用流收集数据-6
本章内容口用co1lectors类创建和使用收集器 口将数据流归约为一个值 口汇总:归约的特殊情况 数据分组和分区口 口 开发自己的自定义收集器 我们在前一章中学到,流可以用类似于数据库的操作帮助你处理集合。你可以把Java8的流看作花哨又懒惰的数据集迭代器。它们…...
[前端开发] JavaScript基础知识 [上]
下篇:JavaScript基础知识 [下] JavaScript基础知识 [上] 引言语句、标识符和变量JavaScript引入注释与输出数据类型运算符条件语句与循环语句 引言 JavaScript是一种广泛应用于网页开发的脚本语言,具有重要的前端开发和部分后端开发的应用。通过JavaSc…...
初识Qt | 从安装到编写Hello World程序
文章目录 1.前端开发简单分类2.Qt的简单介绍3.Qt的安装和环境配置4.创建简单的Qt项目 1.前端开发简单分类 前端开发,这里是一个广义的概念,不单指网页开发,它的常见分类 网页开发:前端开发的主要领域,使用HTML、CSS …...
机器学习:过拟合和欠拟合的介绍与解决方法
过拟合和欠拟合的表现和解决方法。 其实除了欠拟合和过拟合,还有一种是适度拟合,适度拟合就是我们模型训练想要达到的状态,不过适度拟合这个词平时真的好少见。 过拟合 过拟合的表现 模型在训练集上的表现非常好,但是在测试集…...
变分自编码器(VAE)PyTorch Lightning 实现
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心&…...
设备驱动开发_1
可加载模块如何工作的 主要内容 描述可加载模块优势使用模块命令效率使用和定义模块密钥和模块工作1 描述可加载模块优势 开发周期优势: 静态模块在/boot下的vmlinuz中,需要配置、编译、重启。 开发周期长。 LKM 不需要重启。 开发周期优于静态模块。 2 使用模块命令效率…...
C语言位域(Bit Fields)知识点精要解析
在C语言中,位域(Bit Field)是一种独特的数据结构特性,它允许程序员在结构体(struct)中定义成员变量,并精确指定其占用的位数。通过使用位域,我们可以更高效地利用存储空间࿰…...
离散数学——图论(笔记及思维导图)
离散数学——图论(笔记及思维导图) 目录 大纲 内容 参考 大纲 内容 参考 笔记来自【电子科大】离散数学 王丽杰...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
